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Abstract

.Stiﬁ' initial-value ODE methods (e.g. BDF) normally require the Jacobian matrix as bart of
a Newton-like iteration within each implicit time step, and require it to be formed and stored
explicitly, whether the linear algebrai(;, method used is direct or iterative. But, a Krylov subspace
iterative linear s&stem method, which involves the system matrix only in operator form, can be
made part of an inexact Newton method within such a stiff ODE method in a matri:;—free manner,
requiring no explicit Jacobian matrix storage. Such combinations, using BDF methods, have been
implemented with Arnoldi iteration, GMRES (the Generalized Minimum RESidual method), and
CG (the Conjugate Gradient method). Various practical matters (scaling, starting, stopping, etc.)
are dealt with in the stiff ODE context. In the context of general nonlinear algebraic systems, we
provide some theoretical foundation for the combined Newton-Krylov method by giving convergence
results that include errors due to the difference quotient approximation to the linear operator. Earlier
tests showed matrix-free methods to be quite effective, at least when the spectrum of the problem
Jacobian is rather tightly clustered. To improve their robustness, we have added preconditioning,
in an experimenté,l solver called LSODPK, which we tested on ODE systems that arise from time-
dependent PDE systems by the method of lines. Preconditioner matrices can be formed from the
interaction or reaction terms, from the spatial transport terms, or both (as in operator splitting).
The additional matrix storage can be reduced greatly by grouping the diagonal blocks in a natural
way. The methods appear to be quite effective in improving both speed and storage economy over

traditional stiff methods, and over matrix-free methods without preconditioning.
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1. Introduction

In a previous paper [4], we considered the use of Krylov-subspace projection metnods in
solving large stiff systems of nfdinary differential equations (ODE’s). Typically, methods for
solving stiff ODE sysfems are implinit, and so require the solution of a nonlinear algebraic
system of equations at each 'integratinnl step. Newton’s method (or sbm_e mddiﬁcation of it)
appears to be the best general approach to such sys;:ems, and this leads to solving sévera.l
linear systems at each step. For large problems, most of the work required for Vtvlvle integration
is in the hnear.algebra opéra‘pions associated with these linearvsysterns. In addition, Wl‘len
using direct melthods to solve the linear syétems, much of the f:ore.me‘m_ory required is nsed
for the storage of tne coéfﬁcient matrix and its decomposition factors. Altérnatively, the
Krylov methods are iterative linear system solvers which do not reciuire the storage of the
coefficient matrix in any form, and hence require far less storage than dirent methods. All
that is required is the ability to perform coeflicient matrix-vector multiplies. Tn [4], we
referred to the combined stiff ODE method/Krylov method as a matﬁx-free method, and
discussed both theoretical and computational aspects of the combined algorithm. In- this
paper, we will continue investigating ‘these combined algorithms, with particular emphasis
on the importance of preconditioning the linear systems solved by the Krylov methods.

To be more specific, we will consider here the numerical solution of the ODE Initial
Value Problem

g = f(tv 3/)7 y(to) = Yo ( : d/dt 7y€RN)' ’ | (1‘1)

We will assume that the ODE in (1.1) is stiff, meaning that one or more strbngly damped

modes are present, and will use the popular BDF (B@ckward Differentiation Formula) meth-



| ods to solve it. These methods have the general form

. ,
Yn = 3 AiYnej + RBoYns  Yn = f(tn,¥n), (1.2)
i=1

where g is the method order. Since the BDF methods are implicit, at each time step one

must solve the algebraic system

' ‘ q
Yn — hBof(tnsthn) — an =0, Gn= D CiYn-j, Bo>0, (1.3)
_ | 2

for yn. We will actually deal with an equivalent form of (1.3), namely

Fo(2) = Tn — Bf(tn, an + Bon) = 0, (1.4)

in which mn’ is defined by

‘ Ty = h'yn = (yn - an)/ﬂo-

The Newton iteration then has the form:
Let a:n(O) be an initial guess for zy.

For m =0,1,2,--- until convergence:

 Psy(m) = —Fa(za(m)) | . (1)

Ta(m + 1) = @n(m) + su(m),
where the coefficient matrix P is some value of (or an approximation to a value of)
Fli(z)=1-hB,J(t,y) (y=an+ Boz), : (1.6)

with J(t,y) = 8f/dy, the system Jacobian matrix.
In [4], we considered two Krylov-subspace projection methods for approximately solving

(1.5). These were Arnoldi’s Algorithm and the Incomplete Orthogonalization Method (IOM),




both due priina.rily to Saad [17,18]. The prel.iminary tests in [4] indicated the potential
usefulness of these linear solvers on ODE pfoblems for which there is some clustering of the
spectn;m of the matrix P, but also indicated the need for some form of preconditioning
of the linear systems (1.5) in order for the combined BDF/Krylov method solver to be
effective on a much wider class of problems. Precoﬁditioning techniques must be chosen
with the particular problem features in mind, gnd also with a Yiew to keepi.ng the storage
requirements low. For problems arising from time-dependent partial differential equation
(PDE) systems, choices Based on successive overrelaxation (SOR), and on the interaction
of the PDE variabl‘ev at each spatial point are available. |

Work that is clt:"sely re‘lated to ours includes that of Gear and Saad [9], who origina]iy
proposed using Arnoldi’s Algorithm and IOM in stiff ODE solvers, and Miranker anci Chern’
[15] who considered the ﬁse of the Conjugate Gradient Method in the solution of the model
probiem dy/dt = Jy b‘y BDF methods for which J is symmetrié and positive definite.
Additionally, Chan and Jackson [5] have considered the use of Preconditioned Krylov-

subspace projection methods in ODE solvers. However, their methods differ from those

considered here in several respects. First, the basic Krylov methods considered in [5] are

the Conjugate Residual Method (CR) and Orthomin(k) (cf. [8]) We note that CR applied

to (1.5) is only guaranteed to converge when P is symmetric and positive definite, while
Orthomin(k) only requires that P is positive definite for convergence. Chan and Jackson
argue that for symmetric problems (i.e. J = 0f/0y symmetric) the step size selection

strategy of the ODE solver will normally Choose h so that

1—hBX>0 ‘ (1.7)



forall \; (i = 1,..., N) an eigenvalue of J. Hence, in this case P = I —hf3,J would be positive
definite. When J is nonsymmetric, (1.7) holding for all /\; does not imply P is positive
definite, as Chan and J a;ckson note. Thus, the application of CR and Orthomin(k) to such
linear systems may fail. Second, these methods are actually applied to the preconditioned
linear systems, and so one must bé careful when choosing the preconditionings tob be used
so that the resulting system has a matrix which is again positive definite, as Chan and
Jackson also note. In our setting,.Amoldi’s Algorithm and GMRES are guaranteed to
converge when the matrix P is nonsingular (whether or not it is positive definite). This
results in a Wi(ier class of available preconditionings when using Arnoldi and GMRES.
The rest of the paper is organized as followé: Section 2 summarizes the Newton and
Newton-liké iteration for the nonlinear system and the basic linear iterations to be consid-
ered (Arnoldi, GMRES, and CG), and includes a new resuit on an incc;mplete version of
GMRES. Section 3 gives some local convergence results for the combin‘ed Newton/Krylov
meth’ods. Section 4 discusses scaled preconditioned methods in general, and Section 5 de-
scribes specific preconditioners suitable for ODE systems arising ‘from certain PDE systems.
Section 6 gives éome numerical test results} using a modified version of the general purpose

ODE solver LSODE [13,14].

2. Preliminaries

In this section we introduce a class of Newton-like iteration schemes known as Inezact
Newton Methods and discuss their relevance here in solving the nonlinear system (1.4). We

then introduce the Krylov subspace projection methods under consideration, and discuss
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some of their convergence properties.
(a) Newton Methods

Newton’s method applied to a general nonlinear system
F(z)=0, F:RY — RV, | ()

with solutioﬁ z* ;esults m the iteration scheme'
Choose x(O) an iniﬁ;al guess for :v*
For Tvn'=.0,‘11, ... until convergence, do:
Solve

Set z(m + 1) = z(m) + s(m),

where P = F’(m(m)) is the Newton matrix (F' \deﬁoting dF/dz). In the stiff ODE context,
a system of the form (2.1) needs to be solved at évery step, and so mahsf ODE solvers
attempt to save work by computing and storing P (and its decomposition factors if é. direct
metﬂod is used to solve (22)) éﬁce, and usﬁxg it for all iterations on that step. Furthermore,
P is also ‘held fixed over several steps of the integfétion, only discarding the current P 1\‘Vhen ‘
it is de’;ermined fo be sufficiently out of date. The resulting iteration is knqwn as modified
Newton; and tyi)ically gives a linear rate of coﬁvergence as opposed to fhé éuadra,t’ic rate of
convergence for the full Newton scheme. | |

When using an itérative'method to solve (2.2) approximately, one has sevefa.l options.
First, 'in the case where P is formed and stored exﬁlicitly, and saved fof-use over several
steps, then the basic iteration scheme is quiﬁed Newton with P some ‘apiproximation to

F'(z(m)). One then approximately solves the modified Newton equations (2.2) by some



.iterative scheme. One example of this approach is the ODE solver GEARBI [12], which .
uses Block-SOR as the basic iferative solver. Another is the solver developed by Chan and
Jackson [5], Wliich uses the Krylov methods CR and Orthomin(k) as the iterative solvers; |
we note that both of these ODE solvers require the fdrmjng and storing of the matrix P.
A second approéch to solving (2.2) approximately is to work with the full Newton
eqﬁations (2.2) where P = F’(z(m)). Since there is a significant cost associated with forming
P, this approach only mak’es- sense when P does not need to be formed explicitly. All of the
Krylov subspac“;e projection methods mentioned a,bO\.re only re.quire. the action of P times
a vector v, not P itself.. Hence, one' possible way to approximate this action is by using a

difference quotient

Pv = Fl(z)v ~ (F(z + 0v) - F(z))/o (0eR) (2.3)

where v is a vector of unit lengfh and z is the curfent iterate. This approach is taken by
the authors in [4] and coﬁfinued here. We refer to these methods as matriz-free due to
theAabsenc'e of required storage for P. With ei_ther. approach there is an error associated
with only approximately éolvipg (2.2), and with the second approach there is an additional
error resulting from the approximation (2.3). We next discuss the class of Inexact Newton
methods, which (ieals with errors in (2.2), and then in Section 3 we discuss the combined
errors associated with (2.2) .a,nd (2.3).

From Dembo, Eisenstat and Steihaug [6], an Inexact Newton Method for (2.1) has
the following general form:

Choose z(0) an initial guess for z*.

For m = 0,1, -- until convergence, do:

Find (in some unspecified manner) a vector s(m) satisfying



fo

Fla(m))s(m) = ~F(a(m) +r(m) (2.4)

| - Set z(m + 1‘) = z(m) + s(m) ‘
The residual. r(m) repres.en;cs the amount by which s(m) fails tb satisfy the Newton equation
(2.2). It is not generélly known in advance,'being the result of some inner algorithm which .
produces only an approximate solution to (2.2) (e.g; an iterative methoa). Typically, one

must requiie an auxiliary condition 'on_ the size of the residual r(m) for convergence. In [6],

"it is shown that if -

Il < lFG@)l, m=oL2, (@9)

where 0 < 7 < 1, then z(m) con{/erges to a true solution of F(z) = 0 at 1éast linearly, as
long #s the initial guess z(0) is close_ enough. Here, || - || is any norm on RV.

For the present stiff ODE context, the condition (2.5) isboverly restrictive in that actual
convergence of the iterates is not necessar&, and the cost of obtaining them is high. Here, the

Newton iteration begins with an explicit prediction y,(0), and a corresponding prediction

© 2(0) = (ya(0) — @n)/Bo of hfn Thus, the first linear system to be solved on the nt* time

step is Ps = b with

b = —F(2(0)) = hf(tn, ya(0)) = 2(0),

P= F(a(0)) = I — 18oJ (£, Ya(0))-

The stiffness of the pfoblem can be expected to make b largest in the stiff components (i.e.,

" in the subspace corresponding to the stiff éigenvalues). Since the prediction is norrﬁally '

sufficient in the nonstiff components, all one really needs in the corrector iteration is to-

damp out the errors associated with stiff components, for stability, not actual convérgénce.



Thus it is of interest to find out how much one can relax (2.5) and still obtain enough
accuracy in the approximate solution z(m) to «*. In [4], it is shown that if (2.5) is replaced
by the weaker condition

Ir(m)l| <8, m=0,1,2---, | (2.6)

then

lim sup ||lz(m) ~ z*|] < §/K,

where K is a constant dépending only- upon F and z* , assuming that z(0) is close enough
to z* and 6 ié suﬁciently small. Thus, one can obtain any degree of aecura;,cy in z(m)
desired by simply cAhoosing d small enbugh. Tt is further argued in [4] that the constant
K = 1 for the stiff ODE c.ontext. Therefore, if €1 is the desired tolerance in the error for
the approximate z(m), choosirlé § = € is reasonable in (2.6).

For modified Newton iteration, under a;ppr,opriate con;iition's on P and F that guarantee

the local convergence of the iterates £(m) to * with P # F'(2*), one has linear convergence

in that as m — oo
lle(m + 1) = 2*|/l|=(m) - 2¥|| = C,
where 0 < C < 1, and again || - || is any norm on RV. The estimate

Crm = ll2(m +1) = a(m)]/lla(m) - a(m — 1| 2.7)

of the asymptotic rate constant C can be easily found once z(m + 1) has been computed,
. and then used in subsequent stopping tests. Hence, a stopping condition on z(m + 1) of the

form

flz(m+1) -2 <e
will be satisfied approximéitely if the (verifiable) conditiqn

. A



Cllz(m +1) —z(m)|| < e

holds, provided that C’ well approximates C/ (1 - ), (;r-simply C if C is sufficiently small.
LSODE uses thié convergence accelération idea in its stopping test for modified Newton
iterations (along with so?rié ‘suitable fudge factofs), and it is quite beneﬁcia,i in reducing the
average number. of iterations per steb, In [4], it is shgwnb th@t if the Iﬁexa’ct Newton itérates

z(m) and resi@gaIS' 'r(m) satisfy the stronger condition
Il < 0 IFEm)IE for m=0,1,2,-+,
where 0 < 5 < 1, then for any ¢ > o
Hm(m*; 1) -z < leli(ﬁ +1) —2(m)|l(1 + %*.) - (28

for all sufficiently large m, with Cp, given' By (2.7). When only (2.6) holds, inequality (2.8)
is no longer true in general. HoWever, a heuristié argument is given: in (4] which indiéates
that if é is sufficiently small, then (2.8) does Hold for all iterates of interes.t_. Again if € is
the prescribed tolerance for z(m), then it is likely the case that 6 need;to be much Vsmalle.r
than €;. The exact choices used for é ;nd- €1 .a.l-‘e given below and in [4].
(b) Krylov Subspace Projection Methods:.
In this subsection we considell‘ three iterative linear solvers. 'Thése are Ainoidi’é Al-
“gorithm due to Saad [16,17], the Generalized Minimum Residual Method (GMRES) due

to Saad and Schultz [19] and the Conjugate Gradient (CG) Method due to Hestenes and

Stiefel [11]. All of these are algorithms for the approximate solution of the linear system

A:l:‘:: b, . o (29)



where A is an N x N matrix, and z and b. are N-vectors. Here, (2.9) represents the full
Newton equations (2.2) with A = F)(xtm)),b = —F(z(m)) and the solution vector z
represents the increment s(m) = z(m + 1) — z(m) giving the next Newton iterate z(m + 1).
(To conform with normal usage, the letter # is also used to denote the solutions of linear
systems; the p?u‘ticula‘r meaning should be clear from the context, however.) We give
here a brief development of Arnoldi and GMRES, along with incomplete Versi‘ons of these
algorithms. More details on. Arnoldi are given in [16,17,18], and on GMRES .in [19]. We
then close with a statement of the CG Method for symmétric positive definite systems.

If z, is an initial guess for the true solution of (2.9), then letting z = z, + z, we get the

. v equivalent system

Az =1,, ’ (2.10)
where To = b — Az, is the initial residual. Let K; be the Krylov subspdce
K = .span (1o, Arg, - ,Al_lro).

By a Krylov subspace projection method on K; we mean a method which finds an approxi-
mate solution

T] = %o + 21, with zjeK;.
To uniquely specify 2; (or z;) some additional requirements are necessary. These typically

are one of two types: either require that

(b— Az;) L Ky (or (ro — Azj) L Ky) (2.11)
or .
b Azl = _min, b~ Azl (= pip v~ Azl) @12)

10



~
Here, orthogoﬁality is meant in the usual Euclidean sense, and || - ||z denotes the Euclidean
norm. The combinations of requiremeﬁs (2.10) ‘and (2.11) versus (2.10) and (2.12) give
rise to differént Kfylov methods. I/{equiriﬁé that (2.10) and (2.11) hold leads to Arnoldi’s
Algorithm, while (2.10) and (2.12) lead to GMRES.

.‘/.Arnoldi’s Algorithm and GMRES both use an Arnoldi process [1] to construcf an or-
thonormal basis of the Krylov subspace K;. Briefly, an orthonorﬁlal b;j,si,s (v1,-+-,0) of K
is constructegi using the algorithm: |

1. Compute 7, = b— Az, and set v; = To/||7oll2 -
2. Férj: 1,.-.,1 do:
Wi = Avj — ihij'vj , hij = (Avj, ;)
‘ =1
hivr; = [[wirillz, vi = Wit/ i1,
Here ( -,- ) is the.Euc]jdean inner product. If welet V; = [v1,-- -, v1] denote the N x! @atrix
with ;:olﬁmns v;, and H; = (hy;) is the I x I uppér Hessenberg matrix whose nonzero entries

are given by the above hij , then Saad [17] has shown that

'
/
T

H = VTAV, and VTV, = I, o (2.13)

where [; is the I x [ identity matrix. It is assgmed throughout the vectors ro,.Aro, oo Ay,
are hnearly inc{epéndent so that the Eimension of K is l. .‘ |
To describe Arnqldz"s Algorithm |, first let z; = Viy, vzhere yleRl . Then condifi_on
(2.11) is equivalent to | |
WT-/LVI?JI - Vr, =0. |

If H; = V,TAV1 is nonsingular, then y = Hl_lVlTro. and

T =25+ 2= o+ V;HI'IVITTO. _ i (2.14)

11



Since ViTr, = Bey , where B = ||7,]l2 and e; = (1,0,---,0)TeR!, (2.14) reduces to
T = T, + BVIH[ "ey. (2.15)

An important practical consideration is the choice of [, which amounts to a stopping crite-

rion. A very useful identity for this is the following equation for the residual norm:

16 = Azill2 = hugaglef uil, (2.16)

where ¢; = (0,---,0,1)TeR! . The equation (2.16) follows from the relation
AV, =ViH| + hiy1vigqef

which can be derived from the algorithm. An interesting feature of the relation (2.16) is
that one does not have to form z; or y; in order to compute ||b — Az;|},. If we perform an
LU factorization of H; , writing H; = LU, and assume that no pivoting was necessary, then

it can be shown [17] that

Py |€1Ty1| = hi41,P , ' (2.17)

-1
-1 .
Uy H l;
=1

where the l;(i = 1,---,1—1) are the successive multipliers (subdiagonal elements of L) . In
general, a similar equation holds in which the product above is taken only over those i for
which no pivoting is done. See (13] for more details. .

The use of (2.16) to estimate the error ||b — Az;||; then leads to the following algorithm,
in which [,,,, and § a,ré given parameters:

Algorithm 2.1 (Arnoldi’s Algorithm):

1. Compute r, = b — Az, and set vy = 7,/||ro]|2-

2. Forl=1,2,-++,l s do:

) .

(a) wigq = Ay — Zhﬂv?, hi = (Av,v;)

=1

12



Piy1g = flwigll2
Vg1 = Wigr /gy -

(b) Update the LU factorization of H, .

(c) Use (2.17) to compute g = hiprlef wi| = ||b — Azi|; -

() If ;y < &, go to Step 3. Otherwiée, go to (a). -

3. Combute T =10+ |l7oll2ViH;  e1 and stop.

In the above algorithm, if the test on-p; fails, and if | = Iz iterations have been performed,
then one hé,s the option of either accepting the final approximation 1, or setting z, = z;
and then going back to Step 1 of thé algorithm. This last procedure has the effect of
"restarting” the algorithm. We also note that due to the Vupper Hessenberg form of H,
there is a convenient way to perform an LU factorization of H; by u’sing the LU factors of
Hi1(I>1).

In Algorithm 2.1, as [ gets large, a consideréble amount of the work involved is in making
the vector vy orthogonal to all the previous vectors vy,---,v. Saad [17] has proposed a
modification of Algorithm 2.1 in which the vector vi41 is only required to be orthogonal to
the previous p vectors, vj_p41 ,--+,v . Saad [17] has shown that equati‘éns (2.16) and (2.17)
still ho-ld in this case. This leads to an algorithm called the Incompleté Orthogonqlization
Method, denoted byA IOM. 1t differs from Algorithm 2.1 only in that the sum in Step 2(a) ,
begins at @ = 1, instea,d of at ¢ = 1, where i, = maz(1,l - p+ 1) .;‘.The remarks made
after Algorithm 2.1 are also applicable to IOM. In [17], Saad compares the two algorithms
on several test problems, and reports that IOM is sometimes prefer?ed, based on {:otal work
required and run tirﬁes.

t

When A is symmetric, the inner products h;; theoretically vanish for 1 < -1, so that

13



one can take p =2 . If A is also positive definite then IOM with p =2 is 'equiva,lent to the
Conjugate Gradient method [17, Sec. 3.3.1, Remark 4]. Thus a value of p less than I,
might be expected to be cost-effectiye when A is nearly symmetric. |
| Saad [17] and Gear and Saad [9] have given a convergence analysis of Algorithm 2.1
which shows that Arnoldi’s Method converges in at most N iterations and suggests (but
in ‘general does not prove) that the convergence of the iterates { z; } to the solution of
- (2.9) is fastest in the dominant subspace (that is, in those components corresponding to
the eigenvalues in the outermost part of the spectrum of A), which would include the stiff
- components for the ODE context. |
The possibility of a breakdown alsé exists when using Algorithm 2.1. ‘This can happen
in two different Qays: either w4 = 0 so that vj4; cannot be formed, or H; . may be
éingular which meané that the maximum number of Arnoldi steps has been taken, but tile
final iterate cannot be computed. Tﬁe first case has been referred to as a happy breakdown,

v

since w41 = O implies H; is nonsingular and z; is the exact solution of (2.9) (cf. Brown
f2] -or‘ Saad [18]). The second case is more serious in that it causes a convergence failure.
In the ODE setting, where A = I — hf3,J , a way to handle the second failure is to reduce
the stepsize h and retry the step. We note, however, this second kind of breakdown cannot

happen when A is positive definite. To see this, recall that H; = VITAVI , and so for any

y#0 -
(v, Hy) = (3, VT AViy) = (Viy, AViy) > 0

since Viy £ 0 in the fact that V] has orthonormal columns, and since A is positive definite.
Thus, H; is positive definite and so nonsingular.

The GMRES method differs from Arnoldi’s method only in the way the vector g is

14



computed, where ; = z, + Vi . Suppose we have taken [ steps of the above Arnoldi
procesé with w4y # 0. Then we have two maﬁ:rices,

Vigr = [v1, -+, vpg Je RV XD

whose columns are orthonormal, and the matrix HjeR(HD*! defined by
_ H; : T
Hy = , where r = (0, ,0,h1+1|1) eR'.
T
It follows from the Arnoldi process that
AV, = Vi Hy. (2.18)
The vector zeK; is chosen to satisfy (2.12), namely
7o — Azi||2 = min||r, — A2]|2. (2.19)
zeKy . .

Letting z = Vjy and using (2.18) gives

() = llre — Azll2 = [|Ber — AViyll2

= ||[Vi41(Ber — Ely)|!2 = ||Ber — Hiyll2.

where 8 = ||7,||2 and e; = (1,0,---,0)TeR™!, since Vj;; has orthonormal columns. Thus,

the solution of (2.12) or (2.19) is given by
1 = 2o + Viy,

‘where y; minimizes J(y) over yeRlA.ﬁ'

The mjnimization of J(y) is accomplished by performing a QR factorization of H; using |
Givens rotations. As Saad and Schultz [19] have noted, it is desirable to be able to update
the factorization of H; progressively as each.coiumn appears (i.e., at every step of the Arnoldi

process). This allows one to compute the residual norm ||b — -Az;||; without computing Ty
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at each step. To see this, let F; be the rotation matrix which rotates e; and ejyq by the

angle 8; , namely

1
1
c; —s8
P = j j ‘_
s; ¢ — rowji+1 (2.20)
1
e 1 -
where ¢; = cos(f;) and s; = sin(f;). Next, suppose that the rotations Fj,---, F; have been

applied to H; , giving

FiFj_y-+ FH; = RjeRUHVXI,
where R; is upper triangular with its last row containing all zeros. At the next step of the
Arnoldi process, the last row and column of Hj;; appear. Let d = (d', k)T, where d’'eR/*!
and h = hjig 41, be the new column. To obtain Rj;y first form d = Fij__l....Fld and let
its next-to-last component be denoted by r.. (Note that the last cémponent h is the same

in both d and d .) The rot-étion Fj41 is then chosen to eliminate % in d . This gives
ciri=r/ m
A3j+1 = —h/\/r2+_h2..
After [ steps, one has the decomposition
/ QfH, = R,
where QF = FiFj_; - -- lFleR(""l)x({H) and RzeR(“'l)xz is upper triangular with zeros in its

last row. Thus, we have
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J(y) = ||Ber — Hyyll2 = ||Ber — QuRiyll2 = |8QF e1.— Ruyll2-

‘ R - . .
Let R; = : and g; = 8QFe1 = (@1, 9)T with geR' and geR. The value of y which.
0---0 o

minimizes J(y) is then

w=(E)y'm, - (2.21)
and

b — Azj|l2 = ||8QF ex — Ruyill2 = |gl-
An ea,sy calculation gives g = - $182-+-$;, and thus we have
b= Azflz = Blsy -+~ sil, o - (2.22)

which is an inexpensive way -tq calculate the norm of the residual associated with z; . See
Saad and Schultz [19] bfor mdre details.
The use of (.2.22) leads to the following algorithm, inv which 42 and 45 are given param-
eters: . |
Algqrithm 2.2 ( GMRES ):
1..Compute r, = b — Az, aﬁd sef v = 1'0/||'r'o||2 . |
9. Forl = 1, las do
L
(a) wigr = Av; — Zhilvi,hu = (Avl,v,-) "
: =1
hipip = |lwigallz
V41 = Wi/ h1_+1,‘1 -
(b) Update "che QR factorization of H; .
(c) Use (2.22) to compute p = ||rollz - [s1--- 1] = Hb — Azl2 .

(d) If pr < 6, go to Step 3. Otherwise, go to (a).
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3. VCompute :21 =z, + Viy; with y; given by (2.21), and stop.
The remarks on restarting after Al_gorithm 2.1 are also valid here.

As in Algorithm 2.1, it is also the case here that as [ gets large much work is required
to make v41 orthoéonal to all the pre\}ious vectors vy,--+,v; . One can also propose an
incomplete version of GMRES (denoted by IGMRES), which differs from Algorithm 2.2 only-
in that the sum in Step 2(a) begins at i = i, instead ¢f at ¢ = 1, where i, = maz(l,l—p+1).
One immediate problem with IGMRES» comes from the fact that equa]jt'y (2.22) no longer
holds. To see this, note that from the incomplete Arnoldi process, as long as wH_]‘;é 0, we
still ha.vé

A_Vz = Vi i,
where H I(GR(Z+‘1)X1 is now a banded upper Hess?nber_g matrix, and Vj;; has columrs with
~ unit norﬁ but V111V1+1 # I in general. It follows that H; will still have full column rank,

and so let

H = QR

be its QR factorization. Here again, Q; is an (I +1) x (I +1) orthogonal matrix, and Ry is
an (l + 1) x { upper triangular matrix whose last row contains all zeros. The approximate
solution z; is given by

=z, + Viy

where y; solves the minimization problem

min ||Be; — Hiy» (2.23)
yeR! _ . .
as before. The residual associated with z; is

b— Ax; =71, — Az; = 1, — AViy; = Vi [Ber — Hyyil,
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since 7, = BV, 1€1. Next,

ﬁél - f_Izyz = fey — Qriiy = Qu[BQT er — Riyi),-

and since y; solves the minimization problem (2.23) we have

0

Ber —Hiy=Qi| ) = ﬁ¢11+1911;161’
o0 |-

| /5411;-1 €1 |

where @Q; = [q1, -+, qi41] - Therefore,

b— Az = ﬂ‘./l+.1QI+1;qa.1€1a
which gives |

16— Azills = Blafaer] - Visagiallo | (2.24)
If V141 has orthonormai columns, then |[V1"+1q1+1||2 = |lgi4+1]]2 = 1 since Q; is orthogonal.

In this case (2.24) and (2.22) agree, and so we must have
|gfpre1] = |sisa -+ sil. BT (2.25)

To show that (2.25) still holds when V;“‘ d.oés"n'ot have orthonormal columns will require
some further j;lstiﬁca,tidn. | | |

At each stage of thé incompiete Arnoldi process the QR factorization of & ; will be
updated. Let F;i(5=1,---,1) be the Givens rotétion matri‘cesv,‘of dimen_sion (I+1)yx(I+1)
defined by (2.20) so that | -

T
Qi =Fy -F_1;---Fuy,

with

Hi = QR
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The extra subscript [ on the F}; indicates only that they are viewed as (I + 1) x (I +1)
matrices when used to form ¢; . The components ¢; and s; are independent of (wh'ere l
denotes the current step of the Arnoldi process). Also, it is clear that some of the columns

of @; change as [ increases. Hence, we will write

Q= [fh,l, Q21, (Il+1,l]-

Theorem 2.1: Let Viyq = [v1,---,v41] be the vectors computed in taking ! steps of the

above incomplete Arnoldi process. - Let Fj;(j = 1,...,]) be the Givens rotations used to
' )
factor H; into Q;R; . Then the last column of Q; is

Ny ! ! T
Q10 = (H si, e [[ s e2[[ 6 -5 ctmast, Cz) (2.26)
) =1 =2 1=3 .

and

Viriga = siVigi- + aoga. (2.27)

Proof: We show (2.26) by induction on ! . Forl{ =1,

and so ¢21 = (s1, cl)T . Assume (2.26) holds for [ replaced byl —1. Then qlT,,_l_is the last

row in the matrix

S=F_q11F_95-1- - Fy 1.

Now, because F};;_; and Fi(j=1,. ;1 — 1) are related by

0
Fia |
ijl = ’ ?
0
0---011

we immediately have that
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Next, since
and letting

we have

where

" Therefore,

Fi_y,-Fi_qy e Fi=

0f{1
aq —3
E,l = = . »
s ¢

€R2X(1+1)

Q1 = (sigii_y, ) - (2.28)

Relationship (2.26) now follows from (2.28). Finally, from (2.28), .

Vs = Vi vl = sitVigi—1 + avig,

| which is (2.27). Q.E.D.

From (2.26) it is'clear that

T . )
Gi41,0€1,= 81 S+ 81,
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and so (2.25) continues to hold for the incomplete process. Next, (2.27) gives a relatively
inexpensive way to form Vi i1g/41, in. (224) If di = Vigy;—1 has been saved from the last
step, then

div1 = Vigrqig1g = sidi + cvpqg

can be formedbat the cost of one scalar-vector multiply plus one vector add. The norm of
di41 then néeds to be computed. While not cheap,“ this is still much less» expensive than
the complete érthogonahzation method. (i.e. .GMRES) when p (the number of vectors to
reorthogonalize Av; agé.iﬁst) is even modestly smaller than lmaz -

When the matrix A is symmetric, the inner products h; theoretically vanish fori < I-1,
so thz;t one can take p = 2 as with Ié)M. If A is also positive definite, then GMRES or
IGMRES with p = 2 is equivalent to the Conjugate Residual method, while if A is only
positive deﬁnite? then GMRES 1s equivalent to the Generalized Conjugate Residual method
(cf. Saad and Schultz [19] for more details). )

Saad and Schultz [19] have given a pon{fergence analysis of Algorithm 2.2 Wl;ich shows
that the GMRES iterates converge ,to‘t'he trué solution c;f (2.9) in at most N iterations.
We also note that Algorithm 2.2 may have breakdowns. If w;y; = 0 in the Arnoldi process,
then Saad and Schultz [19] have shown z; is the exact solution of (2.9). This is also referred
to as a hai)py breakdown.‘ When wyyq # 0, the matrix H; has, full column rank, and so
the least squares problem (2.19)(or the minimization of J(y) )'ca;n always be solved via the
above QR factorization. However, in some cases the approximation z; mdy not be of much
use. We give an example illustrating how GMRES (and also Arnoldi’s method) can have a
dramatic failure. |

Fzample 2.1: Let A be the permutation matrix sending e; — ez — -+ — ey — ey,
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where e; is the ith standard basis vector in RN . Then

\ 1 0

Consider solviﬁg Az = b, where b = e; and z, = 0 . Then z* = A7'b = ey . We have

V= [el,---,el]"'and H; is given by

0 RN
1 : _
Hy = for I< N,

1 0 | A
| with Hy = A. Hence, H; is singular for [/ < N and the Arnoldi iterates z; do not exist for

| <N ,but oy = z, . Next, for GMRES

and J(y) is a minimum for ‘
Y=u= (-Efﬁl)—lﬁlTVlilb-

Since VT

7310 = e1, and since Hfey =0(1 =1, .++,N — 1) because the first r_owkof H; is all

_ ‘zeros, the GMRES iterates satisfy
y=Viy=0(10=12,---,N—-1), zny = z..
For this example, neither GMRES nor Arnoldi’s method make any progress until / = N .
Notice that restarting either aigorithm when [, < N 1s ’éf no"avail here either.
Finally, When> the matrix A is symmetric and positive definite, it‘ is appropriate to
use an iterative linear solver specifically designed for .such.systems. vWe(will'consid‘er the
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Conjugate Gradient Algorithm (CG) of Hestenes and Stiefel [11] in this case. As noted
above, ‘Arnoldi’s Method and CG are theoretically equivalent when A is symmetric and
positive ‘deﬁm't(.a. Thus CG also generates approximations z; in the Krylov subspace K; .
For definiteness, we give a version of the algorithn; below.
Algorithm 2.3 (Conjugate Gradient):
1. Compute ro="b _ Az, and sef ”m _—.:'ro .
2. Forl = 1,2,---,lma; do:
(a) vy = Ap
oy =1L 1 /pfw
T =21+ oy
T = Ti-1—
(b) If ||r1]l2 < & , then stop. Otherwise, go to (c).
1 (e) B =i/
P =11+ B
We note 'that‘the storage requirements for CG do not depend upon [,,,,, in contrast to
Arnoldi’s Method a;n(i GMRES. For a modern treatment of the CG method, see G(ﬂub and

Van Loan [10].

3. Nonlinear Convergence Theory

For all of the algorithms considered in Sec. 2(b) the matrix A is not needed explicitly. All
one needs is to be able to calculate matrix-vector products of the form Aw, for any vector

v. Since A = F'(Z) for Z an approximation to a root of (2.1), the matrix-vector products
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Av in the above algorithms can be replaced by difference quotieﬁts of the form
F'(Z)v = [F(% + av) —F(z)|/o, o ascalar.

The resulting algorithms will be referred to as Finite-Difference Projection methods. In [2],
Brown has 'given a convergence fcheory for the combined Inexact-Newton/ Finite-Difference
Projection methods which result when using finite-difference versions of Arno-ldjl’s Algorithm :
and GMRES to approxirﬁately solve the Newton | eqﬁations (2.2). We sﬁmma,rize these
results in this section,.and then present a:similar fheofy for a ﬁnite;difference version of the
Conjugate Gradient Method.
(a) Finite-Difference Arnoldi and GMRES

In this subsection Wé present a ﬁnite—differeﬁée version of Arnoldi’s Algéorithm. We show
how to relate the results of this algoritilm applied to Az = b to tha;t of lappiying thé regular

Arnoldi method (Algorithm 2.1) to the perturbed problem
(A+E)z =0,

where b = —F(a’:) and A = F'(z) . We then state a result relating the size of the residual
for the finite-difference algorithm to the sizes of the o "s in the diﬁ‘;erence quotients. For
more details, the réader is referred to the paper by Brown [2].
A finite-difference version of-Algorithm 2.1 can be given as:
Algorithm 3.1 (Finite-Difference Arnolds):
- 1. For &, an initial guess, form ¢, = [F(:T: + 0,80) — F(&)]f0, .
Set 7o = b — g, B = Fof||Foll2, g1 = D1-
2. Forl = 1, dp:

(a) Form g1 = [FY(Z + orly) = F(3)]/on
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I
(b) Set diyr = qry1 — habi, hy = qhati (i=1,---,0)
i=1
hivrg = || @isllz, Bie1 = Brga/higrge
After ! steps of this algorithm have been taken, one can compute the approximation
&1 = 3o + VIHT 19 T4y,

assuming H 71 exists. .The hat’s are used to distinguish the resulting vectors and scalars
from those obtained using regular Arnoldi, Algorithm 2.1.

Ifi steI‘)s‘ of Algorithm.3.1 are possible (thatis, @; # 0 for ¢ = 2,--.,1), then the vectors
q1,---,q are linearly independent and the vectors #;,-- -, 4; are an orthonormal basis for the
subspace K; = span (qu, @) :. This follows from the fact that step 2(a) above is simply
a Gram-Schmidt orthonorrﬁa]ization procedure. Next, let the errors in the ﬁnite-diffefence

gquotients be given by

€& =¢qi+1 — A (1=1,---,0). (3.1)
If we let vthe N x N ‘matrix E; -bé given by
E; = elVlT, (3.2)
where €' = [elv,...,ez]eRNx’ and Vi = [#1,... 7] , then
(A+ E)d; = gm fori=1,---,1 : (3.3)

In [2], Brown has shown that applying Algorithm 2.1 (regular Arnoldi) to the perturbed

problem

(A+ Ep)z = 7y, (3.4)
with z, = 0, is equivalent to applying Algorithm 3.1 to the unperturbed problem
Az = 7o, - (3.5)

26



again with 2, - 0. (Recall that Az = b is eqﬁivalentA to the system Az = r, , where
r, = b— Az, andia: = 2, + z .) It follows that if 21. is defined by |

5 = Vil Wi, = B‘Afgﬂz—lel,
with 3 = I7o]|2 » then % can be viewed as an ‘approxima,te solution to the perturbed problem
(3.4) generated by applying Algorithm 2.1 for [ steps. In addition, equation (2.16) holds
for theA perturbed prbblem (3.4). |

The residual a,ssoéiated with &; = &, +2; viewed as an approximate solution of the linear

system Az = b can be expressed as
o= b—Air=b- A%, - A% ‘
= (b~ Ago) = ol + [fo — (A + 2] + Ei,

or

7 = € + [fo — (A + ENal+ B4, (38
where €, = ¢, — A%, = b— Ai‘q — 7, . Thus, the résidual 71 can be thought of as being
composed of three typeé of errors: the first term on the right hand side éf (3.6) tepresenting
the error in 7, , the second term representing the erfbfé in solving the perturbed system
(3.4), ana the last repres;anting the errors in the difference quoﬁents. For the implemeﬁted
algorithms in the ODE context described later, we always assume &, = 0 . This theﬁlgivesj
€ =0 . We no;v state a slightlymodiﬁed version of a result in [2].
Theorem 31 : Let Z be an approximation to a solﬁtion z* of (‘2_.‘.1), where F” (%) is nonsinéular
with F’ Lipschitz continuous with constant 73011 a convex neighborhood D in RN containing

T and z* . Consider the linear systeni
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where 4 = F'(i:) and b= —F(:T:) . Let &, = 0 and let § > 0 be given. Choose § > 0 small

enoﬁgh that

IS

AAATM2 <1, BylA7l2libll < 5, 3.7)

and
Z + veD for all veRY with lvfl2 < ,8
i,et oV = (01,..0n)TeRYN be chosen so that |joV||; S g .
Then for at least-one le{1,---, N} the Finite-Difference Arnoldi iterate &; given by -
&1 = ||oll2ViH e,
exists and satisfies

1 — gl < 6.

This result says that for o;(z = 1,---,N) chosen small enough, the approximation
computed by Algorithm 3.1 can be made as accurate as desired. Unfortunately, nothing

can be said about the size of [ requ.ired for a given 6 , as Example 2.1 shows. However,

f

even when the residual norm exceeds § for the final &; computed (I = lipaz) , it may still be
possible to continue. This follows from the fact that the regular Arnoldi iterate z; is always

a descent direction for the full nonlinear problem. If we define the function
1 T
o(2) = 2 F(@) F(a),
then a descent direction for g at the current approximation Z is any vector p such that
Vy(z)p <0,
where Vyg(z) = (%gl—(f),-- . %(E))T. Since Vg(Z) = F(z)TF(z) = —ATb,p is a descent

direction for g at Z if
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—-bTAp <0

For such a direction it follows that g(Z + Ap) < g(Z) for all A small endugh. Brown [2] has

o
\

shown, when z, = 0 and the Arnoldi iterate z; exists, that
—bTAz; = —bTb <0 foralll=1,---,N.

Hence, z; is always a descént di;ection for g at z. For Algc')rithm 3.1, when %, = 0 and 3
exists we have | | A |

| 5T A% = —bTb + b7 g,
»Hence, if the ¢;’s are small enough, then &; will also be a descent difeption for g at .5: . See
Brown [2] for more details.

In praétice one would not try to enforce condition (3.7.), Whichlm.ay be overly restrictive
oﬁ some problems. To see this, note that F' = I - hf83,J in the ODE setting, and so the
Lipschitz conétgnt ~ for F' is simply hBorys ','where vy is the Lipséhjtz constant for 8 f/oy,
the ODE system Jacobian. For a typiczﬂ stiff problem <y¢ can be quite large, and so trying to
force (3.7) to hold would result 111 too small é, value of h. This is the pﬁce one pé,ys for usiﬁg
norms in the analysis, as the Lipschitz const@nt ~ measures the worst-case nonlinearity in
F. A better approach is to choose the o; so that the errors in t-he ﬁnite—difference quotients
~are small. See Brown [2] for more details, and Dennis and Schnqbel [7] for more general..
information on qombuting ﬁnite—difference derivative approximations. Siﬁce Arnoldi a,.nd
GMRES both use the same Arnoldi process, a completely sjmilar theory is t.rue for the
finite-difference Version of GMRES. We refer the reader to [2] fof ‘more details.

(b) Finite-Difference Conjugate Gradient
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In [2], Brown has presented a convergence theory for a ﬁnite-difference version of the
Generalized Conjugate Residual method of Eisenstat, Elman and Schultz [8]. Here, we show
how a modiﬁ_ca{tion of this theory will allow us to prove a result similar to Theorem 3.1 for a
finite-difference version of the Conjugate Gradient Method. The main tool will again relate -
the results of the finite-difference algorithm to that of applying the regular algorithm to a
perturbed problem. |

If we i‘eplace the matrix~ve(;tor- products 111 Algorithm 2.3, then we have the following:

Algorithm 3.2 (Finite-Difference Conjugate Gradient)

1. Set W, = [F(Z 4 0,&,) — F(Z)]/0, and let 7, = b — @, .

- Set pr = 7, . |
é. Forl=1,2,--- do:
iy = [F(z + oipr) — F(2)] /o
&y = *L #_q/pF
] - 211+ éafy
f = F1oq — &y
Bror = 0/ 1
Prar = F1+ B
The hat’s above are again used to distinguish the resulting vectors and scalars from those
obtained using regular Conjugate Gradient, Algorithm 2.3. Note that once Z, has been
chosen and #, is defined, Algorithm 3.2 applied to Az = bkis the same as applying it to
| | Az =71, withz=2,+ % and 2, =0. - (3.8)
Suppose ! steps of Algorithm 3.2.are possible and the vectors py ... py are ]jnearly inde-

pendent. Define P, = [p1.... ;ileRN*} and note that P, has full column rank. Let
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€= - Ay (i=1,--,1)
b.e the errors in the difference-quotient approxir@ations, and let the N X N matrix E; be
given by | |
E = G»I(PZTPI)_IPIT{ | - (3.9)
where ¢ = [61,'---,61]€RNXI . Then
W; = ('A+El)f’i (i= 1,---,?)-'
We can then define thé pertu;bedil')ro.blem ‘
(A+ E)z =, (3.10)

Note that £ is Vnot likely to be symmetrié a;nd at the moment A+ E; is not necessarily even
positive definite.

We nextlgive a result which shows .‘ th@t »applyirng Algorithm 3.2 to the reformulated
problem (3.8) ijh Z =O is équivalént té applying Algorithm 2.3 to the pértulfbed problem
(3.10) with z, =A0 : -

Theorem 32 Assume.that { étég;s of Algorithm 3.2 applied to t3.8) haye been possjble.
Let B, = (7. 7], W) = [12)1,...,1171],1?1+1 = [Pr,Dip1)s O, By ‘ana 32’."’314156 the fesulting
scaiars and» vectors, and- let % be the aﬁpfoximate solution to (38) I P = (D1, 2]
ilas full.coluﬁ‘ln rank, v‘fhen lvsteps of Alg;)-rithmb3.2 ai)plied to (3.10) are possible. If

R, Wi, Pi1, 0,0, ,82,.._., Bi+1 and z; are the resulting scalars and vectors, then
Ry = RI,VVI = WZ,PI+1 = _]31+1,a,' = &4(s = 1,--+,0),0 :’B,’(i =2,--- ,l+ 1), , (3.11)
zi = % and
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71 = 7o — (A + E1)Z, with E; given by (3.9) . (3.12)

Proof: The results follow from the fact that @; = (A+ El).ﬁ,» (i=1,---,1), and simply from
the structure of the/a,lgorithms. QED

From ‘vrelations (3.6) and (3.12) we next have that
T =€+ 1+ B2,
and so
p = lI7ill2 < lleolla + 1]l + |Elle. (3.13)
From (3.9), |
N El2 < |I€l||§ NEFBY BT,

and so we must find bounds for ||€1|_|2 and ||(131T151)_1151T||2 . To bound the norm of €
assume that F’ is Lipschitz continuous with constant 4 in some neighborhood D in RV of

a solution of (2.1). Then by Lemma 4.1.12 in Dennis and Schnabel [7] for each i =1,---,!
PG + oi) ~ F(2) - F(@)otila < Lo a3

as long as 7 + b,-@-eD . Thus,
el < s — Alls < Do 133 =1, (314)

Letting || - || » denote the Frobenius norm of a matrix and o' = (03,... o/)TeR’,

L
2

T
Y .
sg(Za?np,-né) :
=1

Now; since P = [py,... pr], we have ||pi]lz < ||Bl]|2 fori = 1,---,I. Hence,

{
I€llz < lle'llF = [Ellfi!l%

l Tupon2n i
i€'llz < =lIPIElol2,
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and so from (3.13) we have .
- NTT: ST By=1 5 .
2 < leollz + Uflle + PN 2 - ICETR)T Bl - (12

Similarly, from the Lipschitz continuity of F”,

. : 7 . .
leoll < Ziol -l

and Wé can write
< Loul -l + Wil + ZUBIEN s - WPFR) BT Nl (35
We will use inequality (3.15) in the proof of Theorem 3.6 below.

To bound ||(PITPI)"1PIT|'2 , we begin with a review of some of the properties of t‘he.
Conjugafe Gradient Method, and then introduc.e a deﬁnition. and prove some technical
lemmas.

Theorem 3.3: Consider the liﬁear system Az = b , where A is symmetric aﬁd positive

vdeﬁnit'e_. Suppose that ! steps of ‘Algorithm 2.3 are possible with r; # 0 . Then the following

are true: ‘ ' )

oTr; =0 fori# g, (i,j=0,---,0) -~ (3.16a)

- rlTpi:O'forizl,---,l | (3.160)

pTApi=0 fori=1,---,1—1 S  (3.16¢)

- span (p1,..Pi41) = span (7,,..11) = span (ro,Ar'o,l...,AIro)* N (3.16d)
' T # 0 implies piy1 # 0 : (3.16¢)

The Conjugate Gradient iterates x; converge to the exact

solution A™'b in at most N iterations. . (3.16f)
Praof: See Golub and Van Loan [10]. QED

Let the function dj : RV*¥ — R be defined by

“di(B) = min (|| Bqllz : g¢R* with ||g||2 = 1),
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for aﬁy N x k matrix B . Clearly, dk(B) > 0 if and enly if B has full column rank.
| Additio_nall'y, if be RN, then d;(B) > di41([B,b]) for [B,b]eRV*(*+1)- Furthermore, if B has
full éolumn.rank, then | |
| (B7B) Bl = 1/ (). - (3.17)
- For a proof of this last fact, see Brown [2]
Lemma 3.4: Consider solving Az = b using Algorithnl 2.3 where A ;s symmetric and positive
definite. Assume that !steps havebeen taken with.r; # 0. Let B; = [r,,... 7], W) = [wy,... wi]

and Py = [p1,..pit1] - Then

I7oll2 > dipr(B) 2 dipa(Re) > 0 (k=0,---,0), (3.18a)
ol > dp(Wi) > dy(W)) > O(k = 1,---,1), and (3.188)
Npulle > de(P) > dpa(Prpa) >0 (k= 1,--- 1 +1). (3.18¢)

Proof: If any r; = 0 with i < [, then Algorithm 2.3 would have given z; as the exact solution
and the algorithm would have terminated at stept<!. Thusr; #0 forall¢ =0,1,---,1.

By (3.16a) all the r; are orthogonal and so di11(R;) > 0 . Since di(R,) = ||ro||2 , we have
lIrollz = d2(R1) > da(Rz) - -+ > diya(By) > 0,

which gives (3.18a). By (3.16d), di41(Piy1) > 0 which immediately gives (3.18¢c). Since
W; = AP, if Wiy = 0 for some yeR' , then AP;y = 0 which implies Py = 0 since A is
nons_ingular. Next, Ply = 0 implies y = 0 éince P, has fuﬂ column rank. Thus, &i(W;) > 0
which gives (3.18b). QED. |

Lemma 3.5: Let Z be an approximation to a root z* of (2.1), where F’(%) is symmetric and
positive deﬁnite,‘with F' Lipschitz contimious with constant v on a coﬁvex neighborhood
Din RY containing :E.and A Consider solving
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Az = b, where A = F'(Z) and b is arbitrary , (3.19)

~using Algorithm 2.3 with initial guess z, = 0 . Assume that ! steps have been taken with
71 # 0, and let wy = Apy and Py = [p1,..i41] - Then for each ¢ in (0,€') , where

€ =diy1(Pi41) , there exists a 7 > 0 such that

l{— 1 Vstveps of Algorithm 3.2 applie;i to (3.19) with i‘o =0 are'po.sﬁsible,' (3.20)
de-.l(PHI)‘.>_dH€'1(PI+1)_‘€> 0, . : (3.21)

| Rig1 — R‘l+‘1”2 < €7A NP1 = Pryallz < €, and o . (3.22)

A+ By, is positive definite with =~ (3.23)

|Eeille < SHet 1 Peall2)*/(diaa(Pisa) =€)
whenever |lo'1]|; < v7' . |
Prgof: Lete>0 be chosen so that
e<e. (2
Next, let g4 > 0 be chosen svo.that Z+ veD Whe‘gever [lvll2 < ¢ . Then choose 7 > 0 so that
T < pf(e+ |jp,+1uz), and | (3.25)
T‘zl(f"*‘ ||P.l+1llz)2/(d1+1(sz+-1) —€) < Amin(4) , - | (3:26)
Where'Amin(A) -ivs; the smallest eigenvalue of A .‘ Note that since z, and &, are both zero,
To = o = pl‘ = P = b‘. Further, b # 0 since 7 # 0 , ;md by Lemma_,‘AZ’».él, (3.18a) - (3.18¢)
hold. From Algorithm 3.2 and the Lipschitz continuity of F’, 1y = 11(01) is a 'continuo'us’
function of Ul}.in a neighborhood of o1 = O , and W7 — wy "as oy — Ob . Fdlf lo1] S T define "
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€1 = W — Apy and Er = e (pF py ) 15T,

so that

(A+E1)f71 = 1.

Using (3.25), Z + o1p1eD since {|o1pif|2 = |o1] Alprll < T(e+ || Pryall2) < & .
- Thus, by (3.14)
Y o 2 ' v 2
lerllz < Sloal - U2llz < Sloul- (e [Prall)*
Using (3.18c), we have

T )
| Exll2 < 7(€+ 1Pr1ll2)/llpell2

< et 1P ll2)*/ (dia(Pra) = ),
whenever |o1| < 7. By (3.26) || E1]|2 I< Amin(A) , and so A + FE; is positive definite. This
then implies
Plin = p(A+ E)py >0,
since P # 0. Thus, &y, 21,71, ,@2 and | P2.can be formed, and it is clear that each of these is
a continuoﬁs function of &1 for 4 near zero. Furthermore,
oy =y, 31— 2y, o1, B —*ﬂ;g and Py — pz as oy — 0.

Hence, by ghoosing 7 smaller, if necessary, we have

||R1 — Rq||2 < € and ||132 — Pyll2 < € whenever |oq| < T (3.27)

Now, for any aeR? with {|a|l2 =1, we héve '

1202 = || Pocx + (P2 = Pa)alls
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> ||[Prallz — |P; — Pall2
> dy(Py) —€ 2 dl+1(PH-1) -€ >0

by (3.18c¢c), l(3.24) and (3.27). This gives dg(l%) > diy1(Pr4a) — ¢ > 0 and so P2T]32 is
nonsingular with p; # 0 . Next, form 1, and define
( :
€3 = Wy — App and Ey = ez(ﬁg‘,Pg)'IPg,where e = [e1, 6]
Tilen by (3.25), Z + o2pe€eD since

lloapallz < loal - |22l < 7(e + |Pall2) < 7(e + [| Prialla) < b

Thus, by (3.14)

el < 2o 13408 < Lo+ 1Rl =12

‘Whenever |[0.2]|2 <1, where g% = (0'1,0’2)T€R2 . The bound for HE2||2 is th:en

B2l < W/ da(P) < I/t

< %||f72||2(€+ [|f,+1||2)2/(d,+1(P1+1-) -

< SHe+ IPuall2)*/(dra(Py = )
whenever ||Uzl|§' < 7. By (3.26), A + E; is positive definite, and 8o
T = (A + Ea)pr >0,

since P # 0 . Thus ég, ﬁg,fz,ﬁg and p3 can all be formed, and again it is clear that each

is a continuous function of the vector o2 for o2 near zero, with

G = g, B2 — Tz, T2 — T2, B3 — B3 and p3 — p3 as o> — 0.
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By choosing 7 smaller, if necessary, we have
|Re — Rall2 < € and ||Ps — P3|z < € whenever le?]2 < 7.

This last inequality implies d3(l53) > diy1(Piy1) — € > 0 in a way similar to that forll:“‘z, and

so P{ P3 is nonsingular with s # 0 . Now form w3 and define

€3 = 3 — Aps and E3 = 63(P5P3)"1P§:, where €5 = [€1, €2, €3, -

2

‘Similarly, |[E3||2 satisfies the same bound as that for |[E;]|2 , and so A + F3 is positive
definite. |

This process can be cbntinued for | — 2 more steps since p; #0fori=1,.-.,1 + 1,and
choosing.'r smaller if necessary at each stage. We note that since r; £ 0 , it is possible to
compute z;41, 741 and pl;*_g using the Conjugate Gradient Method (Algorithm 2.3). Also,
the fact that P41 # 0 allows the computation of w41 and Eyyg = (—:""1(135_113“_1)"115,3‘_1
with |

Pt = PR (A + El+l)ﬁ5+1 >0

for T chosen smaller if necéssa,ry. Thus 7141 exists and is a continuous function of Ulﬁ'lv near

o!*1 = 0 with 44 — r4 as 0't! — 0. Thus, by choosing 7 small enough we will have

diy1(Pri1) 2 diga(Prya) —€> 0
1141 = Rigallz < & |Pipa — Pigalla < €,
A+ Ei44 is positive definite, and

TY
| Erp1]le < 7(6 + 1Pryall2)?/ (disa(Pig1) —€)

for all [|o*+Y]|s < 7. QED
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The next theorem is the main result for the finite-difference CG method, and is the
analogue for the CG method of Theorem 3.1 on Arnoldi’s method.
Theorem 3.6: Let  be an approximation to a root z* of (2.1), where F’/(Z) is symmetric
and positive definite, and F” is Lipschitz continuous with constant v in a neighborhood D
in RN of z* cénta,injng % . Consider solving the linear system

Az =b, o |  (3.28)

where A = F’(:Tc) and b= —F(z) . Let § > 0 be given.. Then there exist constants o, 7 > 0
and an integer L < N such that the Finite-Difference CG iterates &; exist fori=0,1,---,L

and satisfy

o= ”b - A:il”g'é 5 ; (3.29)

for at least one I < L , whenever ||o?||2 <r , o0l = (01,..00)"eRY | and |o,| < @ .

Proof: Let &, be an initial guess for the solution. A™'b and form #, = b — W, , where
o = [F(Z + 0o0) — F(Z)}/ 0o,
where |o,] < o and « > 0 is 'chosen so that
avll|Z,)|2 < 6 and T + 0,&.€D w.hcinever loo| < a. (3.30)
If#,=0, then b = w, , and so

Po = “b — Az,

Y
2 < Zlolllaoll3 < 6/2

using (3.30) and the Lipschitz continuity of F’ . Thus, if #, = 0 we are finished.

For#, #0 ,letz = %, + z. Then applying Algorithm 3.2 to the probleni

Az =7y, 3, =0, (3.31)
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is equivalent to applyiﬁg Algorithm 3.2 to (3.28) V;/'ith i;itial guess £, . Next, apply Algo-
rithm 2.3 to (3.31) with z, = 0 . Let L < N be the maximum value of [ such that the CG
iterates { z } exist for [ =1,---, L and satisfy |

Irill2 = i — Azl >0 forI=1,--,L—1.
S‘ince L is the maximum such value, sz = A~1%, and 77, =0 . Lemma 3.5 applied to (3.31),
- with b = 7, and z replaced by z , then implies that for each € in (0,¢’) , where ¢ = dr(Pz),

|
there exists a 7 > 0 such that:

L steps of Algorithm 3.2 applied to (3.31) with 2, = 0 are posstble, (3.32)

dL(PL) > dL(PL) —e>0, / (3.33)
”RL - Rr|l2 <, ”PL — Prl2 <, and (3.34)
A + Ep, is positive definite with ‘(3.35)

T .
IEzll2 < SHe+ |1 BLll2)?/(dL(Pr) - ) = 7C

whenever llo¥|l2 £ 7 . By use of the Perturbation Lemma (see Theorem 3.1.4 in Dennis
and Schnabel [7], and the proof of Theorem 3.3 in Brown [2]), T can be chosen smaller if

necessary so that

(A + EL)™ |2 < 2|47 o
The residual for #7, = %, + 37, as a solution to (3.28) is then
TL = €+ 7L+ ELZL.

Hence,

pr = |I7zll2 < lleollz + 17zllz + 1 EL]l2/|ZL]l2-
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Next, let 2} be the exact solution of the pertvil_rbed problem (A + Er)z =7, . Then
1zilla = (A + EL) ™ oll2 < 2| A7 2 - [IFoll.

Since
-2 =(A+ EL)—I[(A__;. Ep)ip — o] = —(A + Er) ‘¢, .

|

we have

1221l < NlzEllz + 1A + E) Mz - 17zllz < 24T l2(l7oll2 + [17zll2)-

'I._‘hus,A using (3.15),

1

o o ) v
3+ 2lA7 e -7 C(l|b — Akl + TII%II%)

. ay., .
PL < 77‘ Zo
4Ll (14 27C A7)

< S+ 2| A7 2rC([lb — Aol +5) +lI7zll2(2 + 2rC | A7 l2)-

N>

Since ||fL][2 — 0 as loLll2 = 0 we easily see that (3.29) ho‘ldsvby choosing' 7 smaller, if
necessary. QED | | |

As we noted earlier, Arnoldi’s Agorithm is equivalént to-the Conjugate-‘Gfad-ient-Method
4when A is symmetric an& positive definite. Therefore, when a:ov: 0 the CG interates z;
satisfy

~bT Az = b7 < 0 forl= 1,-Y-~,N. '

Thus, z; is always a des‘cenvt direction for g(z) = 3F ()T F(z) at « : Z. Similarly, the
finite-difference CG iterates Z; will be descen:c directions (when &, = 0 ) if the ¢;’s are small

enough.
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4. Scaling and Pfeconditionihg

The' basic linear iteration methods coﬁsidered in the previous sections are not of much
practical value as they stand. As discussed in [4], realistic problems réquire the inclusion
of scale factors, so that all vector norms‘become wéighted norms in the pro‘blem va,ri@bles.'
However, even the scaled iterative methods seem to be cpmpetitive only for a fairly narrow
class of problems, characterized mainly by tight clustering in the spectrum of the system
Jacobian. Thus for robustness,. it is essential to énhance the methods further. As in other
confcexts involving linez;.r systems, preconditioning of the ﬁne@r iteration is a natura,i choice.
In what follows; the use of scaling is reviewed, and then preconditioned s.ca,led iteration
methods and algorithms are studied in a general setting,
(a) Scaling R

The user of én ODE solver mﬁst provide parameters that deﬁne error tolerances to be 4
_imposed on thé .complilted solution. In LSODE, thefe are relative and absolute tolerances

RTOL and ATOL such that the combination

yi;_lll + ATOL;

w; = RTOL;

is app]ied as a scale factor for component 4* during the time step from t,_1 to t,. Specifically,
a weighted root-mean-square norm
‘ N /2
lzllwrms = [N"l Z(w’/wi)z]
1
is used on all error-like vectors. Thus if we define a diagonal matrix
D = /N diag (wy,:--,wn),

(

we can relate this to an Lo norm:
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lzllwrms = |D " a2

The linear systems Ps = r in (1.5) or (2.2) can be restated in scaled form in térms of
D"lls = 5 and D~ 'r = 7. Likewise, the nonlinear systenl F(z) =.0 can be restated in a
scaled form F (Z) = 0. The scaled version of the IJOM algorithm, denoted SIOM, is descrlbed ,
in detail in {4]. | |

(b) ‘Pfeconditioned Krylov methods.

When a basic lteration fails to show acceptable vconve,rlgence on a given problem, pre-
condi'tionixlg‘is oftén beneﬁcial, especially V\fhen the cause of the slow convergence cé,n bé
identiﬁgcl with orle or more parts of the problem which are .(individﬁally) easier ‘to deal
Wlth. than the whole prqblem. Generally, préﬁonditioning in an iterative‘ method for solving

Az = b means applying the method instead to the equivalent system . _ .'
(PTYAP;Y)(Pyz) = (P7'h), or Az =1, (4.1)

where P, and P, are matrices chosen in advance. The preconditioned pi‘oblem is easier to
_ solve than the original problem provided »that (1) linear systems Piz = ¢ and Pz = ¢ can
be solvgd economlcally, and (2) the prodllct P, P, is in some way close to A. Condition (1)
is eséential because carrying out the method on Az = b cle:lrly réqujres evaluating vectors
of the form P,;_lc, at the bgginning of the itérafcion, during each ifceraltion, and at the end.
Condition (2) is less well-defined, but means slmply that the convergence of the method for
AZ = l)‘should be much better than for Az = b, because A is somehow close to the identity
‘ ma,tri)l (for which convergence is immediéte).

The system (4.1) is said to be preconditioned on both sides, with Py the left precondi-
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tioner and P, the right preconditioner. Either matrix could be the identity, and in that case
one is preéonditiom’ng on the left only or right only, with a single matrix approximating A
It is essential that the scaling of the ljnea,rvsystem (discussed above) be retained in the
preconditioned methods. SLince the scaling matrix D is based on the tolerance inputs to the
ODE solver, D~! can be thought of as removing the physical units from t/he components of z
so that the components of D~z can be éonsidefed dimensionless and mutually comparable.
On the other hand, the matrix. A = I — h3,8f/8y is not similarly scaled, and so, because

Py and P, are based: on approximating A , the matrix
A=PrAPR?

is also not similarly (diménsionally) scaled. More precisely, it is easy to show that if the
(%, 7) elements of Py ‘a,nd_P.g each 1:1a,ve the same physical dimension as that of 4 , i.e. the _
dimension of y;/y;, then so does the -(i, 7) element of A . The 'sa,me is true for the vectors Z
and b: ;che tth c;)mponent of each has the same physical dimension as that of yi. It follows
that the diagonal scaling D! should be applied to Z and b in the same way that it was

applied to z and & without preconditioning,. Thus we change the system (4.1) again to the

equivalent scaled preconditioned system

(D"*AD)(D™'z) = (D7), or. A%

= b. : (4.2)
: Combining the two transformations, we have -
A=D7'PI'AP;'D, = D' Pz, b= D'P . (4.3)

An alternative point of view is to rescale the system first, to

(DT'AD)(D7'2) = (D7)
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and then apply precck);nditionersAQl, Q- t.o D71AD, to get
(QT'DTADQ;Y)(Q2D ™ 2) = (inDflb).

But if ﬁhe Q} are unscaled to P, = D@, D™, this system is identica,i ‘to (42)

Consider now one. of the Krylov sﬁbspace. methods applied to the scaled preconditioned
problem. These methods. éll have invcommo'n..the generatioﬁ of the Krylov sequence

IE' = {AZFO : 1=0,1,---}
from the initial residual 7,. We can assume that 7, = b— A&, corresponds to a given initial
guess o and residual r, = b — Az, for the original problem, by way of rélaﬁgns
F, = D'-llpﬂo, o = D~ P e,

The cq;rection vector & — %, is chosen from the span of the sequence K, trﬁncqted to
a given ﬁnité iengtli'lv (the number of linear iterations performed). But from the relation
Z= D‘ngx, the subspace in which the correctioﬁ T — T is chosen is instead the ébén of
Py DK (trunéatqd), and this is the s-ubspace we are ultimately interested 1n Thus for a

fixed matrix A and fixed initial residual 7., define
K(Py,P,)=P;'DK = {P;'DA%,:1=0,1,---}. o (4.4)

This is the sequence whose first | vectors are used to get z; — z,. The following easy result

1

: . helps to clarify the roles of left and fight. preconditioning,.

Theorém 4.1: The transformed Krylov sequence given by Eq. (4.4) satisﬁeé
If(él,Pz) = K(I,P,P)) = }f(Plpz,I ) - (4.5)
Proof: The general vector in the ;equence K(Py,Py)is |
P{lD('D‘lPl"lAPz‘lD)}D‘?Pflro = Py (PYARSY P,
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= Py PV (AP PT Y = (P PTYAY P P M

The last two expressions bare identical fo the corresp'onding vectors in K'(I, P, P2) and
K (P, Py, I ) respectively. Notice that all D and D1 factors also drop out. QED |
The above result says that the subspace of i__nter_est is independent of the scaling matrix
D, and independent of whether the two préconditioziers' Py and P, are applied on opposite
sides or their product applied on one side or the other. Moreover, if P; and Pz commute, the
subspace is also ‘unchahged if the precoudiﬁoners are interchémged: K(P,P,) = K(P,, Py).
However, this independence does‘ not hold in the actual algorithms. Dependence on D is
evident every time a convergence test is app]ied to the nor£n of a vector. Dependence on the
arrangement of the preconditioners (as well as on D) arises in the posing of orthogonality
or mim'ma*ljty'conditions on the residual. For example, in the Arnoldi method the residual
A%, must be orthogonal to K; (the [-dimensional subspace spanned by the first [ vectors

in K ), with 3¢K;. This is equivalently rewritten as
D 'P[Y(Az —1,) L D7 PK; with zeK; = Py DK,

in the case of preconditioneré (P1, P2). But for preconditioners (I, Py P;) this condition

becomes

DY Az —1,) L DT'PIP K, zeK,
and for preconditioners (P, P,, I ) it becomes 4
DIP P YAz —v,) L DTYEG, zeK),

and the three conditions are not equivalent in general, although K; is the same in all three.
(c) Preconditioned Krylov Algorithms.

46



t

For given preconditioners P; and Py, spéciﬁc precénditioned algqrithms res.ult from applying
the basic IOM and IGMRES algorithms of Sec. 2 to the transformed §ystém Az = b in
(4.2). Most of the algorithmicjssues th;th afiée in the unpreconciitioned case caITy over
directly to the préconditioned case, and we will adopt the same decisions that were made

earlier (and described in [4]), as follows:

-

¢ ‘We take z, = 0, having no choice readily available that is clearly better.

o We will incorporate the scaling in an explicit sense, storing vectors #; that arise in the

method as it-stands rather than unscaled vectors Doy = v;.

e We use a difference quotient representation
Jvw [f(t,y + ov) = f(t,9))/0, o= (lollwrms) ",

although in the code described in (4], we also included a user option to supply Jv in

closed form.

o We use the modified Gram-Séhrhidt procedure for orthogonalizing basis vectors.
o We handle breakdowns in the same same manner as in the basic algorithihs.

e We will use the same constant § = .05¢; as a bound on the residuals ||b — Az;||lwrms

( € is the tolerance on the nonlinear iteration).

‘The preseﬁce of preconditioning does have some side effects on the algorithm, however.

One is that we must actually deal with the operator
Av=wv—-hB,Jv,

as opposed to dealing with Jv and making corrections accordingly. This is because the span
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[75y AFgy« -, A'7,] is not generally the same as [7,, J 7y, - : - ,J 7] with J = DpPlypPD,
unless Py P = 1.

Secondly, the re;idualfquantity p1 computed during the algorithm is |||z = HI; — AZ||s,
and in general this is not directly related to the quantity ||1'1||W rMs = ||b — Az|lwrms in

which we are really interested. Instead, we have a relation 7 = D! Pl‘lrl and hence
~ . ~1 i .
pr = |7l = || Py " rillwrams. - (4.6)
In order to impose a convergence test that comes closer to the test ||7/]lwras < 6, including
the effect of P; when it is nontrivial but without going to the extra expense of computing

”"'l”WRMs, we use a test

p < 8" = 8||PT rollwras/ |Irollw rats.

That is; the factor by which P1_1 reduces the norm of 7, is included as an approximation to
the factor by which P~ ! would reduce the norm of r;. In particular, the convergence test
madeat{ =0is precisely llmollwras < 6, independent of P;. Because of Eq. (4.6), there is
some theoretical advantage to doing all preconditioniﬁg on the right only, but whethe_:r this
is a real advantage in practice is unclear.

We can now state our algorithms for scaled preconditioned versions of the IOM é,nd
GMRES method. ’These are given fo; arbitrary z,, for the sake of generality, and denoted
~hereafter by SPIOM and SPIGMR, respectively. |
Scaled Pﬁreconditz'-oned IOM (SPIOM):

1. (a) To = b — Az,; stop if ||ro[|WRM§ < é.

(b) 7, = D"lPl_lro, compute ||7,]|2 = ||P1_17'o||WRMS,

8 = 8||PT M rollwras/lIrsllwracs, b1 = 7o/ |70/ |2-
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2. Forl'=1,2,--+, ljnaz, do:
(a) Combute At = DTP7T AP Dy
(b) ﬁ)l+1 = Ay — Efm-o hq®;, where i, = maa:(l,i —p+1), hy = (A, %).
(¢) hupry = [r4allzs g = Brga/Brsa .
~ (d) Update the LU factorization of H; = (hij) (an ! X ! matrix). ..
(e) Indirectly compute p = ||b— AF| iby (2.1’6)—.(2.17).
(f) If pr < &', go to Step 3; otherwise go to (a).
3. Compute z = ||?'o||2T~/}JfI,"161, T =, + PZ,"IDZ. :
Scaled Preconditioned Incomplete GMRES (SPIGMR):
1. (a) 7o = b — Azy; stop if ||7ollwrMms < 8.
(b) 7o = D Py 7o, compute [folla = |17 ollwrars,
8" = 8P rollwras/ lIrollw razs, B = Fof 7o l2-
9. Forl=1,2,-,lpas, do:
(a) Compute A% = D P AP DY
(b) W41 = Aty — Zﬁﬂo ﬁ,m")i, where 1, ‘= maz (1,l —p+ 1), hi = (Af);,ﬁi).
(¢) higa, - [Brsallz, B41 = D1/ Paya. |
(d) Update QR factorization of H; = (hi;) (an (I + 1) X | matriz ).
(e) Compute residual p; indirectly by (2.24)-(2.27).
(f) If bz < 6;, go fo Step 3; otherwise go to (a).
3. Compute ||7,]2QFe1 = (@1, 9)", 2= ViR g, @ =z,+ P;' Dz
In the case of the CG method, further considerations are nece_ssarybécaﬂsé‘ of the
assumptions made there that A is symmetric positive definite. CG With prgconditioﬁing, or .

PCG, involves a single matrix M which is also assumed to be symmetric positive definite.
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In the absence of scaling, the PCG algorithm is the equivalent of applying CG to the

transformed system,

(M—I/ZAM—1/2)(M1/2$) — (M—llzb),

but is éxpressed in such a way that no square roots are involved (see Golub and Van Loan
[10]). In the presence of scaling, there seem fo be two choices as to how to apply PCG,
depending on whether we assume symmetry in the ogiginal or the scaled form of the system
(they cannot both bé symmetric for a nontrivial scaling matrix D). In either case, we
certainly want to measure the scaled residual, i.e. test ||b — Az||w RMS, In the convergence
tests. We therefo?e arrive at two different algorithms, as follows:

Under the assumption that A itself, and a preconditioner M approximating A, are
symmetric positive definite or nearly so, we can apply PCG to Az ='b without use of
scaling except that the normiof T = b— Az that we test is ||r||wrpms = ”D“lmllg. We will
refer to this simply as PCG. |

Preconditioned Coﬁjugate Gradient (PCG).

1. r, = b— Az,; stop if ”TOHW.RA‘/ISA < 8.

2. Forl = 1,2,---,lmax , do:

(a) Compute 2y = M 1r_;.

(b) B = 2F ra /2 yriea (B =0).
©m=a0+bpa (m=2).
(d) Compute Ap; .

(e) v = 2L yri_1 /ol Apr -

(f)'ﬂ?l = fL‘I-i +aipy, 11 =111 — aiApr.

(g) I ||m|lwrars < 8 , stop; otherwise go to (a).
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Alternatively, it may be appropriate to assume instead that the scaled matrix A =
D~YAD, and the corresponding scaled p.recon.c.litioner M = D 'MD, are Both symmetrié
positive deﬁnité, and to apply PCG to the scalgd system AZ = (_J (2 = D'z, b = D7'b)
with preconditioner M. We refer to this as scaled PCG, or SPCG. The‘re‘appears to be a
- slight advantage in efficiency to making the scaling implicit by réwritiﬁg the algorithm in
termé of unscaled qu@ntities. The result is the same as the above PCG algorithm except in

the calculation of the inner products in 8 and o; , which are now.
B =zF D7y [2E , D7y (B =0), oy = 2L, D r_a /o] DT Apy.

This SPCG algorithm ca,n’ also be obtained by@pplying CG to the ‘tra,nsiformed éysteﬁl (4:2)
- (4:3), in which P; = P% = M2 keeping iﬁ mind that M = D7IMD is assﬁmed to be
symmetric, while M and M/2 = DIY2D" are not (in general).

We have iiﬁplemented both PCG and SPCG, filling in algorithm defailsv in the same way
as done for the Votl.ler> methods (using z, = 0, ‘a difference quotient Ju, | § = .05¢y, etc.). Of
course, each algorithm is subject to breakdown when applied to a ;;roblem for which the
assumed_symmetry or definiteness fails to hold. VThus the denominators in 5 and og are

tested for being zero before the divide is done.

5. Preconditioners for Reaction-Diffusion Systems

The preconditoned Krylov subspace methods described so far are quite general in
nature, with preconditioner matrices that are as yet unspecified. In this section some specific

choices will be deécribed, as motivated by ODE systems that arise from PDE systems by
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the method of lines (MOL). At this point, our approach attempts to compromise between
totally general methods, in which problem structure is not exploited at all, and totaJlby ad
hoc solution schemes, in which the algorithm and problem features are so closely linked
that flexibility as tg problem scope is lost. Here the preconditibners will exploif problem
structure, within a setting of general purpose methods (BDF, Newton, and Krylov). The
general and special parts of the algorithm are logically well separated. To the extent that
some storage for preconditioner matrices (and aséociated data) will be required, our methods
are no longer truiy matrix-free in some cases. However, since storage economy (as compared
to traditional stiff system methods) is stﬂl a prime concern, any choice of preconditioners
should be strongly inﬂt\lenced by its storage c;sts.
(a) Problem Structure.
The class of problems we shall concentrate on here is that of ODE systems in time that
are the result of treating time-dependent PDE systems by some form of the method of lines.
Assume that a vector u = u(¢,z) of léné;th pis govemed by a PDE system 'in time ¢ and a

space variable z (of any dimension) of the form

du/0t = R(t,z,u) + S(t,2,u), (5.1)

plus initial and boundary conditions, in which R represents reaction terms and S Tepresents
a spatial transport operator-in z (diffu%ioﬁ, advection , etc.). Tlius R is assumed to be a
i)oint fum:ﬁon of '.u, while S contains partial derivatives of u with respect to 2. The MOL
treatment of such a system consists of representiﬁg the spatial variation of u in a discrete
manner, and thereby obtaining a semi-discretized form of (5.1) in which S is replaced by

a discrete function, while the time derivative remains continuous. To be more specific,
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but without digressing unduly into MOL techniques, consider traditional finite difference
discretizations of (5.1). In this case, discrete values u; represent u(t, ;) at ¢ discrete mesh
points z; and suitable difference approximations to § (t,z,u) at each zi,' and to the boundary

conditions are formed. The vector

. y = (’u,l,...’uq)T
of length N = pq then satisfies an ODE system
9= R(t,y) + 5(t,y), ‘ (5.2)

with given initial conditions, in which R and § .a,re discrete forms of _R and S.

Of course there are many variations on this approach (staggered gri(is, moving grids,
etc.) and there are radically different discretization c.hoices,‘ hotably the various finite .
- elemenf schemes. The latter gen.erally .result in ODE systems that are linearly implicit,
with a SQuare mass matrix multipliying 7. ﬁor the pfesént, we will assume that;’-Whatever _
the spatial discretizatipn, the ODE system'has been put into the explicit form (5.2) (possibly
‘by multiplying By the inverse of a mass matrix), although it is a straightforward matter to
extend our methods so as to treat linearly imp]icit systems as such. In order‘t‘o'r»eﬂect this
greater generality in (5.2), we Will denote the gldbal vector Iy as

R A L 6y
in which each of the ¢ blocks yl (each of length p) is asso?iated with a point z = z;, but
may or may not represeﬁt a discrete value éf the original vector u in (5.1).‘ |

In (5.2), the essential feature of the additive splitting R + 5 is that R does not involve

any spatial coupling, while § involves little or no interaction between the coinponents of y;

at any given point.z;. Thus the individual blocks of (5.2) can be written
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3./1"-’-' fit,y) = Ri(t, 9:) + S‘i(t;yl, 3 Yg); (54
where Rz 1s a function of y; but no other y;, while the dominant feature of S; is the coupling
émong‘various y; arising from the d'iscretiza“uion of spatial derivatives.

(b) Block-Diagonal Preconditioners.

To obtain a preconditioner matrix M that is inten;ied to approximate the Newton matrix
A =1- hf3,J, the most obvious approach is to consider a matrix L that approximates the
| system Jacobian J, and use>M =I-h3,L. For the bidcked ODE system given by (5.2)-
(5.4), a natural choice for L is one that is block-diagonal and hence can accurately reflect
the interaction of the components at each spatial point, but not the spatial coupling. Thus
considgr a \Block_-diagona,l matrix

B = diag(B},- -+, By) : (5.5)

in which each B; is p X p. We can get B to @pproximate J in one of two ways:

B;=8fi[0y: (1™ diagonal block of J) (5.6)

or

B; = 0R;/8y;. (5.7)

We will refer to these choices as the total block-diagbna,l and the interaction only approxi-

mations, respectively. They differ by 85;/3y; , the diagonal part of the discrete transport
Jacobian.
. A
In either case, the computation and proéessing of the matrix B and M = I -~ k3, B is

'certainly a nontrivial matter. It may be that the problem permits the B; to be supplied in

closed form fairly cheaply, but in most practical cases, we expect that this is not feasible.
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Theﬂ a difference quotient approximation to B; must be done. For thi;, we assume that
a routine to compute the individual blocks . filt, y) (in the total case) orivRi(t, y:) (in the
interaction only case) ié supplied aﬁd is r.eaéonably inexpe}nsivé. ,The cost of one sugh
evaluation would be expected td be about 1_/ﬂq, timés that of e\./a,lua;ting all of f(t,y) = ?)A
(somewhat m(')re in the total case, somewhat less in the interactioq only case). Then a
difference guotient estimaté-of B; will involve p such calls (assuming a base value of f; or
R; is saved for use in‘ the differencl-quotiénts», but without eXploiting any sparsity strﬁcture
within B;), and the total cost of B will bbé about that of p evaluations of f.

Once B is e;\ra,luafed, it is' subjected to LU decomposition, and the LU factors of th_g
‘blocks are saved. Then these are used as‘néede;d whenevgr a vector B~ v is called for. Péri-
odic reevaluation of B is done by the same strategy used for tfaditiohal rﬁethods, involving
evaluation and uée of the Jacobian J. | |

The block-diagonalﬁstru‘cture of B a]low? for considerable potential spéedﬁp if the/:.scheme
is implemented on a multiprocessor. The various bloéks, corresponding to the various spatial
points, can be evaluated, then‘factoi'ed, and the factors appljed to # given (blocked) vector,
all in parallel with one another. As many as q processors can be occupiéd-concufrently for
a problem with ¢ meshlpoints. Block—diagonal precondition_ing can be expected to im.prove'
performance considerably. When.thg vintera,ctioh‘ among the compoﬁents of u at each point
z is the domiI-mn‘t_‘(_:ontributor to the stiffness of the system (5.2). The inciusion of part of
the transport contribution, as done in (5.6), may or may not improve pg;formance further.

The st‘o:ragelcost is clearly an additiional p*q = pN words, to hold the B; and then their
factors. Tl}is cost could well be greater than that of all of the remaining Wolrk‘vsp_ace in\‘/olved '

when p is sizable, although not nearly as big as the cost of storing all of the Jacobian and

~
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its LU factqrization in a typical multi-dimensional system treated by a tra,ditionel method. -
A natural way to reduce the st.orege’ cost is to do grouping of the diagonal blocks B;.
By this we mean that t.he spatial points are grouped, most likely by a simple decompositionl
of the original spatial domain,- and for each group only o.ne B; ie evaluated and used as
an approximation to the othere in the group. This is éimply tHe analog in space of the
strategy of periodic Jacobian evaluations in time - a strategy which is widely used and
highly cost-effective. - In both-ideas, the motivation is that the Jacobian elements needed
are likely to vary smoothly as functions of the relevant ind‘ependent. variable (space or
time) and so need only Be evaluated on some subset of the discrete values of that variable
that are generated. The reéulting crude approxima,tien to Jacobian elements is acceptable
within-a Newton iteration, whereas the full set of discrete values _is'dictated by the accuracy
of .the final computed solution. If the ¢ spatial points z; are somehow grouped into g
groups (not necessarily of equal size) then the cost of evaluating the grouped block-diagonal
appro;drﬁation B gees down to about p(g/q) eve.luations of f, and the storage is reduced
to p’g. Thue there is a potentially great reduction in storage costs with grouping, but the
reduction in computing cost depends on whether signiﬁcantfy more linear and/or nonlinear
iterations must be taken than were taken without grouping.
(c) Transport-Based Precohditioners. : s
Another natural choice presents itself for blocked problems of the 'type‘(5.2)— (5.4),
namely a preconditioner that uses the discretized transport operator S;. Here the inter-
action of the components et each point is ignored, and for each component separately, a
preconditioner arises upon treating the transport contributions of the problem by traditional

iterative methods such as SOR (successive overrelaxation). The details of this precondi-
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tioner will depend heavily on the particular nature of the problem. In order to be somewhat

specific here, suppose that the transport occurs linearly in S, so that we can write

gi(tayla"'ayq) = Z‘Z’Uy.?-*-Bly"_*_Eﬁ”yJ ' <5'8)
: i<i i>i ‘

Assume further that the various coefficient blocks (all p X p) in (5.8) are diagonal, reflecting

the fact that component interaction is completely accounted for in the term R; of (5.4).

Then the blocked matrix
B (Us5) , .
. |=L+B+U - (5.9)
(Li;) B,
is an approxjmation_ to 85 /8y on which a preconditioner can be based. (It may not be all

of 85/dy because the coefficients might depend on y, and that dependence is béing ignored

here.) The corresponding approximation to A = I —'hﬂo;] is
B-L-U=(I-hB.B)-hB.,L-nB,T,

‘which also has diagonal p x p blocks.

Now consider, for exé,mple, the application of SOR to the system ‘
(B-L-U)z=b. o (5.10)

We must suppose that the accelgration parameter w is given, a,nd’ if no better information
- -about its choi';e is available,--vs;e may simply have w = 1 (ana we are dping Gauss-Seidel
iteration). Thé initial guess is some easily éomputable vector z° = M,b, v;/here tihe mé,trix
M5 might be’O, or B!, or w(B—~wL)™, for‘example. V(In our-testsA, we us‘e‘the third choice

for M,.) The iteration is given by

z¥*l = La¥ +w(B -wl) '
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with

L= (B -wl)™Y(1 - w)B +wl].
Thus a given number, m, of iterations produces an iterate
2™ = L7 4+ (L™ 4 L™ b L4 T w(B — wI) b = Mb,

where

M=L""M,+w(C™ 4+ TYB—wh)™. (5.11)

.This matrix M represents a preco'nditioner for the system A:v = b. In practice, it- would
be applied by carrying out the SOR iteration in whatever manner is most appropriate
for the particular problem, depending on the number of spatial dimensions, the boundary
conditions, the uniformity or variation of the coefficients, etc. Keeping storage to a minimum
would be aﬁ important criterion in the implementation.

An easy variaﬁon'of SOR aé a preconditioner is Symmetric SOR, o; SSOR, where each

iteration has a forward and a backward sweep:

gVtY2 = fav g (B - wL)_lwb

gt = ,C_a:f’+1/2 + (B —wU) twh
where £ = (B — wU)™[(1 - w)B + wL]
Some giveﬁ number of SSOR iterations, say m, has the same cost as 27 SOR iterations,
‘but may be more effective because of the symmetrization.
In special cases, one might be able to do even better in approximatin_g the Solutioﬁ of

(5.10). For example, suppose that the dominant transport process is simple diffusion, that

the mesh is uniform, and that for each PDE component the diffusion coefficient is constant.
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Then the product Jx represents a decoupled set of discrete diffusion operators (with source:
term), dV%u + 7 and the system Az = ¢ — hf,Jz = b, after division by h3,d in each PDE

component, corresponds to a collection of scalar Helmholtz equations.
S Au+t Viu=35, A=-1/hB:d,

discretized on ;.a uniform mesh. Forsuch a problem, fast -P‘oisso.n solﬁrers are available. To the-
extent that the diffﬁsion operator dqminates the physical transport process, the resulting
preconditoner sh;)uld be-very?;affective. |

It shoulci be emphaéized that in a;ll of _the above (.:ase-s, the various PDE compoﬁents,
i.e. the comp’onepts of t‘he vector u in (5.1), are treated independently. Whichever of these
preconditioners is used, it is applied separatély to each PDE cbmponént. In particular, the
implementatioh of the combined,élgorithm on a multiprocessor could readily take advahtage
of this fact by carrying .out>the preconditioning operations concufrently for tla1e various
components. | |
| (d) Operator Splitting.

The p.'receding paragraphs give specific precohdlitioner mat;ices without saying just
how they are to be applied. Clearly, ifa single. matrix is chosen as a pfecohditioﬁér it can be
applied on the left as Py or on the nght as Ppin the SPIOM or SPIGMR algonthms or as the
matrix M in PCG or SPCG. But if two different matrices are available as preconditioners,
then in SPIOM or SPIGMR they can. be apphed as P; and P2, in elther order, or the1r
product (in either order) could be applied on one 51de only, or the product applied as M

in PCG or SPCG. There seems to be no convincing argument for or against any particular

choice of arrangements of the preconditioners‘ for a given Krylov algorithm.‘
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For the reaction-transport problems described above, choosing both a block-diagonal
(presumably- the iﬁteraction-only choice) and a transport-based preconditioner convstitutes
an operator splitting approach to7 preconditioning that closely resembles splitting methods
used elsewhere. 'i‘he biock-diagonal matrix B is dominated by the intefaction of the PDE-
components at each spatial point, Whﬂe the transport-based matrix M attempts to account
for the remainder of the problem. Each matrix can be dealt with reasonably efficiently, in
contrést to the matrix J = 8f/8y which reflects both the interaction and the transport
operators. ﬂ

This splitting approach obviou_sly generalizes in the same seﬁse that traditional
splitting methods do, to ODE systems with any additive sphttiné. Thus suppose the systgm
is.

; . ?)=f=f1+f2+----i;fs,
with the various terms fj represeﬁting distinct physical processes (operators). Assume
further that the individual Jacobian matrices Jp = 0fi/0y are easily computed or approx-
imated in such a way that a system (I'— AfB,Jx)z = b can be s;)l‘xred (or approximately
solved) efficiently.. Then each ma,trix Ap =1I—hp,J; (or a comﬁutable approximation to
it) serves as a; preconditioner and the product of A,---, A, 1s a single preconditioner to the
linear system Az = 6,4 = I — hS3,J. 'i‘wo products, of two sui)setg of these A, could be
used as left and right preconditioniers. The bést choice of order in fhe products is unclear
in geheral, and performance may not depend strongly on the order. Heurist‘ically, the use
of P = A1 A;--- A, as a preconditioner would be expected to do We]l to the extent that P

approximates A, i.e. to the extent that
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(T=hBody) (T = hfpds) = I = hBo(y + T 4+ ).

The two matrices above agree only to first order in h. The errors in P associated with higher
order terms would have to be dealt with by the Krylov method in order for the combination

to be effective.

6. Numerical Tests

Tests of the methods described above were done using an experimental solver clerived fomi
the general purpose ODE solver LSODE, wh1ch uses BDF methods for stiff problems. Stiff
test problems were generated by applying the method of lines to PDE systems in two space
~ dimensions. What follows i isa brlef description of the solver, and a description of tests on
tliree problems. All testing was done ona Cray-1 at LLNL.

(a) LSODPK, an Experimental Solver.

A solver package called LSODPK (Livermore Solver for ODE’s with Preconditioned
Krylov methods) was created from LSODE, in which to implement the preconditioned
iteration methods LSODPK resemblés the solver LSODP described 'in [4], Which‘uses'
(unprecondltloned) Arnoldi and IOM algorlthms LSODPK allows the user to select among
Arnoldi/IOM, GMRES/IGMRES, PCG, a,nd SPCG as the basic iteration method, and
a,ocepts user-supplied routines to accomplish the preconditioning operations. This is shown
in a simpliﬁe(l form in Fig. 1. ’l‘he »dri\‘/er routine, LSODPK, calls a single-step routine,
| STODPK, Whi(.:h calls PKSET to prepare for preoonditionjng, and SOLPK to carry out the

linear system solution by calling one of four other routines, as shown. The user supplies F
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LSODPK

STODPK -
PKSET
JAC
{ soex P 1on
SPIGHR
Pce PSOL
SPCG .

Fig. 1. Simplified Block Structure of LSODPK

1
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(for f(t,y)) as iﬁ LSODE, but al:;o two routines, JAC and PSOL, for preconditioning. (All
three names are dummy.names, passed by the user to LSODPK.) JAC inust compute and
preprocess any Jacobian-related data involved in the preconditioning. PSOL must carry
out the preconditionjng of a vector, i.e. replace a vector v with P v, Py lw, (;r Mo,
depending on the choice of method and the nature of the preconditioning. Various integer
flags are input by. the user to specify these choices, and a flag is passed tcv)vPvS,OL to spécify
which P~ 1y is de§ired when both are possible. Tn all other respects, the overall algorithm in
LSODPK is the same as LSODE énd/or LSODP. Calls to PKSET (hence to‘JAC) are made
as infrequently as judged suitable, by the same heuristic rules that govern J evaluation in
"LSODE. As in LSdDP, the default value of the heuristic gonvéfgence test constant 8y is
.05 (i.e. § = .05¢q1), that of [,,,45 is 5, and that of the parameter p is I, (giving complete
rather than incoﬁplete methods).

Various cumulative performance statistics are made available by LSODPK. These in-

clude:
NST = number of time steps

NFE = number of f evaluations

NPE = number of preconditioner evaluations (JAC cal'l;s);
NNI =' number of nonlinear iterations

NLI = number of linear iterations

NPS = number of preconditioner solves (PSOL calis)
NCFN = number of nonlinear convergence failures |

NCFL = number of linear convergence failures
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NFE is also equal to NNI + NLI 4+ 1 (plus the number of internal restarts at order 1, if
any). In addition, LSODPK monitors the average Krylov subspace dimension

AVDIM = A NLI / A NNI,
and the convergence failure rates

RCFN = A NCFN/ A NST‘

RCFL = A NCFL/ A NNI
within an output interval:-Warning messages are printed if these appear to be too large.

‘While the preconditioning routines JAC and PSOL are not part of the LSODPK solver

as such, we have generated several pairs of routines for use on tests in PDE-based problems.
One such ba.ir generates the tétal\block—diagonal part of the Jacobian, in either user-supplied
or ﬁMte-difference form, and then uses LU factorizations of 1;he blocks for linear system
solutions. A second pair generates the interaction-only block-diagonal matrix and also
performs a fixed number of SOR (actually Gauss-Seidel) iterations on the diffusion terms
in the system (not coded very efficiently). A third uses the interaction-only matrix and
treats the diffusion terms with a fast Poisson solver, namely HWSCRT [20]. Three other
JAC/PSOL pa,irs. are the analogs of the first three in which block-grouping is done b)lf a
static partitioning. of the 2-D mesh. The partitioning is a simple Cartesian one in which a
discrete M1 X M, mesh is divided into N7 N groups by partitioning each 1:D mesh of size
M; uniformly into N; groups, N; being an integer divisor of M; . Other possibilities are
easy to-imagine.
(b) Test Problem 1.

We begin with a problem that was used in [4] to test LSODP, namely a system derived
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from a 2-D diurnal kinetics-transport PDE system with two species. The PDE’s have the

-

form

ac &2t 9 act . . '
= Kyt — [ Ky(2)=— | + VOc'/0z + R*(c}, 2,1) (1= 1,2) (V = .01 6.1
o Khamﬁaz(ﬂ (2)3z)+ c¢/dz + R(c ¢ ) (i ) ( ) (6.1)

and are di;c:cret‘ized by finite differencing on a 20x20 mesh, giving a system of size NEQ=800.
The 'det.ails are available in [4], and so are not repea‘t’ed‘ here. | |

This problem was run with LSO]‘)P. (i.e.» Witil uﬁprec:onditioﬁed S.IOM),‘ and with
LSODPK with a variety of method choices. The preconditioners tested 'inclﬁded the to-

tal block-diagonal part of the J écobian, applied on either the left or right, denoted BDL

and BDR (réspectively) in the table below. Also tested were the analogous preconditioners

‘with block grouping, denoted BGL and BGR, using a simple partitioning of the 20x20 mesh -

into 4=2%2 or 25=5%5 groups. The diagonal blocks were generated by difference quotients

" in the results given here.

Preliminary runs with a 10x10 mesh, supported by a close look at the Jacobian of this
problem, showed that the lack of symmetry iﬁakes PCG or SPCG a poor choice here. Thus
in Table 1 we give the results of runs on the 20x20 mgsh'for the SPIOM and SPIGMR
algorithms (in L'SODPK)-, as well as for SIOM (in ‘LSODP).- (The LSODP results differ
slightly from those in [4] becaise of minor chaﬁges to LSODP.) In the column headings,
PRE denotes the freconditioner choice, NGR deﬁotes the number of groups of diagonal
blocks, AVDIM is the overall average subspaéé .dimension (NLI/NNI), and RT is the CPU

run time in sec. The tolerances used were RTOL=10"% and ATOL = 1073 .
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TABLE 1. RESULTS FROM PROBLEM 1
Method | PRE | NGR | NST | NNI | NLI | AVDIM | RT

SIOM - - 2341 | 4525 | 10059 | 2.22 65.4
SPIOM | BDL - 2350 | 2788 | 6397 2.29 [ 83.5
SPIOM | BDR - 2318 | 2748 | 6257 | 228 |81.2.
SPIGMR'| BDL - 2348 | 2793 | 6536 2.34 | 84.4
{ SPIGMR | BDR - 2357 | 2820 | 6374 2.26 83.5

SPIOM | BGR | 5«5 | 2258 | 2655 | 6254 2.36 76.7

SPIOM BGR | 2«2 2341 | 2801 | 6405 .2.29 78.5

As is clear from Table 1, the LSODP solver, using unpreconditioned scaled IOM, is
the fastest overall choice. It is also faster than LSODE (with banded treatment of J) and
GEARBI (with block SOR), as documented in [4], where the good performance of LSODP

is explained. in terms of tight clustering in the spectrum. The addition of preconditioning

has two opposing effects: It reduces the average number of nonlinear iterations per step

(NNI/NST) from about 1.9 to abbut 1.2 without changing the total number of steps appre-
ciably. But it roughly doubles the average cost per nonlinear iteration, not by taking more

linear iterations, but by having to compute and process the preconditioner. The cost of

computing and factoring the diagonal blocks is reduced by a factor of NGR /400 (= 1/100

to 1/16) with block grouping, but evidently the cost of the backsolve operations outweighs »

- the cost savings from the reduced NNI. If the function f were more ekpensive, the opposite
wbﬁld probably be true, and a; choice such as SPTOM-BGR wéuld be the likely winner.
Finally, the data here shows no significant preference between SPIOM and SPIGMR, nor
between left and right preconditioning, ;md this is the reason only oneAsuch choice was made

for the block grouping tests.
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The total storage requirement is also minimal for LSODP. The total length of the real
and integer work arrays is 12,882, or about 16.1xNEQ. For the LSODPK runs, it is about
20.1*NEQ for BDL or BDR, but 17.3xNEQ to 17.1+NEQ for BGR.

(c) Test Problem 2. b_

In order to obtain test problems easily with higher numberé of intepacting con_iponents, :
we have used models of multi-species food webs [3]‘,’ in which mutual competition and/or
predator-prey relationships in a spatial vtkioma;in are simulated. The geﬁefal form of these

models, for s species in two dimensions, is

aci/at = fi(xa y7t70) +dz(czza: + c;y) (z: 1, 2}7 U 7,3)a . ' . ‘- (6'2)
with S s :
fi(xay)tac) - c.i(bi +Z a’lJcJ) | T . (63)

The interaction and diffusion coefficients (a;;, b;, d;) could be functions of (z,y,t) in general.
The choices made for this and the nexf test problem are for a simple model of p préy and
p predator species (s = 2j:o), arranged in that order in the vector c. We take the various

coefficients to bevas follows: ‘
| ai; = —1 (all 1)
aij = %1070 1(i < p,j > p) (6.4)
ai; = 10% (i > p,j < p)
(all other a;; = 0), By , -
Cbi=(1+azy) (i< p)
b =—(1+ azy) (:>p)

(6.5)

di=1 (< p)
d; = .05 (i> p)

(6.6)
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The domain is the unjt square 0 < z,y <1, and 0 < ¢ < 10. The boundary conditions
are of Neumann type (zero npfmal der&vatives) everjwhere. .The coefficients are such that
a um’qué stable equilibrium is guaranteed to exist in the constant coefficient case d =0
[3], namely ¢ = —A~1b., and empirically tﬁe same appears to be true for &« > 0 . In this
problem we take ax =1 .

The initial conditions used for this problém are taken to be simple peaked functions

that satisfy the boundary conditions, given by the polynomial function’
c¢(z,y) = 10 +4[16z(1 - z)y(1— )2 (1<i< s),

which varies between 10 and 10 + 4 .

The PDE system (6.2) (plus boﬁndary conditions) was discretized with central differenc-
ing on an m X m mesh, much the same as for 'Problém 1 (see [4]). The resulting ODE system
has size NEQ = 2 pm? . It is stiff, and an estimate of the spectrum is easily obtained from
the i.n'teraétion terms f; , for which the dominaﬁt eigenvalues are about —10%p(1 + azy) for
the components at a mesh po'int‘(m,y) . However, tlhe diffusion terms cause the profiles to
ﬂaﬁéen out at steady state', so that the equilibrium values of any species ¢* are spread by a
factor of only about 1.08 rather than 1+ « = 2 (though the spread factor exceeds 2 during
' the"tra,nsient). The discrete diffusion terms contribute signiﬁcantly' to the stiffness also.
For thg tests reported here, we take m = 12 (144 mesh points),‘a,nd we take two cases

for p,
(a) p =5 (10 species, NEQ = 1440),

~(b) p = 10 (20 species, NEQ = 2880).

‘we report results for LSODPK with a variety of method choices. The tolerances used were
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RTOL = 10 =6 and ATOL = 10~% . The PCG and SPCG methods were not teste(i because
the J acoblan at ethbmum is hlghly nonsymmetnc The precondltloner pairs tested, Wlth

mnemonic names used in the tables, are as follows:

BDL: total block-dia,gonal part of J on left;
BDR: total block diagonal part of J on rlght )

" 0SS:  operator sphttlng, using 5 SOR (Gauss-Seidel) iterations on- the o |
v diffusion terms for Py and the interaction-only J acobian for P ; -
VOSF:Y operator: splitting; using HWSCRT on the diffusi()n for P, and

the interaction-only J acobian for P, .

Wher'e é, block-diagonal part of the J acobian J is requir.ed, both a closed-form usef—supplie_d
option (USJ ) and a difference ‘quotvie]nt Opti()i; form (DQJ) were tested. Fuitiler, ‘We tested
the ‘analogous set of preconditioner p@irs in which block grouping was done, with NGR =
ng * ng groups from a Cartesian product partition of the mesh with n, groups vin each
dimen.sio'n‘( ny a divisor of 12). All the various possible combinations are toobnumerous
{0 test completely. . Nor did we test the other possible arrangements of £he precqnditioners
(interchanging Pl with P, , or using the prbdﬁct on one side only), as we do not expect those
to yield major vari#tions in pérforma,nce_. However, we did run tests using the individual
precondiﬁohqs in OSS by themselves, i.e.

SOR: left preconditioning with 5 SOR (actually Gauss-Seidel)
iterations; '

107J: . right preconditioning with interaction-only-J acobiabnl. '
Table 2a gives results for the 10-species case (p = 5) , beginning with those from SIOM

(without preconditioning). We see that various preconditioned method combinations do
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better than SIOM, both in statistics and run time. The benefits of preconditioning in
reducing the number of linear and nonlinear iterations per step, and also the numbervof
failed steps and step size feductions forced by convergence failures, are clear for the SPIGMR
method with OSS agd OSF preconditioning. The BDL and BDR choices give competitive
run times but with much higher average numbers of (cheapef) linear iterations per step
—a tre;,deoﬁ" of dubious merit When more costly forms f are contemplated. The one-sided
choice; SOR and IOJ fail even more badly. The OSF choice is more expensive than OSS

here because the 5 SOR iterations are evidently cheaper than the HWS CRT call and nearly

as effective. bFor_the same problem with more diffusion, namely 'd,- = 10 (¢ < 5), the

preference order is reversed, with run fimes of 54 for OSS (where 10 SOR iterations were
found necessary) vs 38 for OSF. From the close agreement between SPIGMR and SPIOM
performance, with either OSS or BDR preconditioning, no further testing of SPTOM seemed
to be worth doing. The use of block gr(;uping with OSS raised AVDIM only élightly, but
reduced the cost s]jghﬂ;f and reduced the required storage considerably — by a factor of
about .é3 in the case of 9 groups an& .62 With 4 groups.

Thé last six entries in Table 2a deal with the case of difference quotient Jacobian ele-
ments. Again block grouping is effective, and it gives a greater overall cost reduction here
because of the higher cost of ébmputing the diagonal blocks with DQJ.

It should be mentioned here that the overall average AVDH\;I above is somewhat mis-
lea,dihg because it includes the nonstiﬁ' transient (roughly 0 < ¢ < 1072), which contributes

nearly half the total cost. The local averages A NLI/ A NNI for intervals beyond the
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transient are much higher, uniformly exceéding 1.5 for £ > .1 and uniformly eXceediﬁg 4 for
t > 5. Thug many of the options.btested Wbuld have performed _better with a value of Iz
* higher than 5, but ‘_then _theifA storage requirements Would -.be higher accordingly. We can
also see here thé potential benéﬁts of a sfiﬁ”/zionstiff switching al'gorﬁhm in combination

witﬁ these algebraic methods. -

TABLE 2a. RESULTS FOR PROBLEM 2 (p = 5)

Method | PRE | NGR |NST | NNI | NLI | AVDIM | RT
SIOM - - 678 | 1125 | 4018 | 3.57 | 39.2
| sPIGMR | Oss(usy) | - | 354 | 404 | 596 | 148 |27.3
SPIGMR | OSF(USI) | - | 354 | 401 | 567 | 141 [340
SPIGMR | BDL(USY) | - | 393 | 502 | 1434 | 286 |29.0
SPIGMR | BDR(USI) | - | 305 | 485 |1283 | 265 |27.1
SPIGMR | SOR - | 566 | 1063 | 3061 | 288 |76.3"
SPIGMR | 10J(USJ) | - | 448.| 577 |1744 | 3.02- |35.0
SPIGMR | OSS(USI) | o | 351 | 400 | 640 | 1.60 |27.1 |
SPIOM | 0SS(USY) | - | 355 | 403 | 588 | 146 |27.4
SPIOM | BDR(USJ) | - | 409 | 501 |1368| 273 |[20.1
SPIGMR | 0SS(DQJ) | - | 354 | 403 | 597 | 148 |20.3
SPIGMR | OSS(DQJ) | 9 | 351 | 400 | 640 | 1.60 | 27.5
SPIGMR | OSS(DQJ) | 4 | 350 | 396 | 649 | 164 |27.3
'SPIGMR | BDR(DQJ) | - | 408 | 512 |1408 | 275 |33.1
SPIGMR | BDL(DQJ) | - - | 390 | 480 | 1324 | 276 |302
SPIGMR | BDR(DQJ) | 9 | 401 | 497 |1381| 278 |27.3

Knowing the relative effectiveness of the various method choices for the p = 5 case, we

ran tests on the p = 10 case with a more restricted set of choices. On the grounds that
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realistic problems are usually too complex to allow for closed form Jacobian element calcu-
lation, we consider only the DQJ option. Table 2b shows the results for SPIGMR, with OSS
and BDR as preconditioners. Here OSS is the better choice, as BDR. suffers from repeated
convergence failures in the linear iteration. The use of block grouping is cost-effective in
both the SPIGM'R—OSS and SPIGMR-BDR cases, and also for SPIOM-0SS, and the total
storage required is reduced by a factor of .48 in the 9 group case and .45 in the 1-group
case. That is, the relative flatness of the equilibrium solution is being exploited in the
precdnditioner, s0 as to reduce the total work space from about 38 NEQ to about 17 NEQ,
with a speedup of 11% in addition.

TABLE 2b. RESULTS FOR PROBLEM 2 (p = 10)
Method PRE NGR | NST | NNI | NLI | AVDIM | RT
SPIGMR | 0SS(DQJ) | - 374 | 420 | 626 149 | 63.9
SPIGMR | 0SS(DQJ) | 9 | 374 | 421 | 696 | 165 | 566
SPIGMR | 0SS(DQJ) | 1 375 | 424 | 704 166 | 56.6
SPIGMR | BDR(DQJ) - 416 512 | 1370 2.68 73.0

SPIGMR | BDR(DQJ) | 9 429 | 529 | 1488 | 281 | 586
SPIOM | 0SS(DQJY) | 1 375 | 422 | 691 1.64 | 56.2

(d) Test Problem 3.

The parameters in Problem 2 are such that the solution is rafher flat spatially over the
stiff part of the problem. In order touobtain a more realistic situation, the problem can be
made much more inhomqgeneous spatially by increasing the parameter « in the interaction
coefficients &; in (6.5). For Problem 3, we take a = 50, leaving all other problem parameters
unchanged from Problem 2. We consider the sé,me two cases, p = ‘5' and p = 10, with the

same initial conditions and discretization (on a 12x12 mesh). The solution now
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shows a sbread in each ¢ by a factor of up to 5.2 at equilibrium, and equilibrium is reached
somewhaf sooner. |
Table 3a contains results for this probler.nv in thg 10-species case (p=5). The runs with
SIOM (no pieﬁonditioning) and with}SPIGMR—SOR failed to finish after 1 nﬁnuté and so
~ were stopped. Clearly this problem requires a preconditioning that inc.ludesrt'he interac-
tion Jacobian. All cases in the table are for user-supplied Jacobian eleménts; all ourv data
suggests that the DQJ results would show. a similar preference order. - The OSS precon- ‘
ditionér was faster than OSF, as in Promem 2, but here both were slower than fhé I10J
(interaction-only) preconditioner. The diffusion apparently contributes less (relétively) to
the stiffnéss, so ,that- dropping the SOR precénditioning at the cost of a sOmeWhat hjgher
average Krylov dimension seems to be a good tradeoff in terms of total cost. Thé BDL and
BDR‘(block-diagoﬁal) pregonditioners perfor"m much like I0J , With,BDR slightly vfaster.
Thus the inclusibn of the diagonal transport coefficient has little effect on eithef NLI or the
run time, when there is no block grouping. Biock grouping is effective With bo‘th,IOJ and
BDR, but less so for I0J; the reasons for the higher NLI there are not cleaf. i?‘or BDR,
there is also evidence that using fewer than 16 groups is probably unwise. Tlie considerable
| inhomogeneity of the equilibrium solution and the moderate amount of diffﬁsion (though
not dominant) are'such that the optimal chéice of preconditioner here is total block-diagonal
on the right with "some block grouping. The S.VPIOM Vru:‘as with IOJ and BDR agrée well

-with the SPIGMR results.
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TABLE 3a. RESULTS FOR PROBLEM 3 (p = 5)

Method | PRE | NGR NST NNI | NLI | AVDIM | RT
SIOM - - | (failed to finish) 560
SPIGMR | 0SS - 300 344 | 418 1.22 21.0
SPIGMR | SOR | - | (failed to finish) >60
SPIGMR | I0J - 299 346 | 626 181|154
SPIGMR | BDL | - 300 346 | 670 1.94 |16.2
SPIGMR | BDR | - 299 344 | 605 176 | 15.2
SPIGMR | OSF | - 306 351 | 437 125 | 27.9
SPIGMR | BDR | 36 299 345 | 644 | 187 | 149
SPIGMR | BDR | 16 299 342 | 635 | . 1.86 14.5
SPIGMR | BDR | 9 298 343 | 655 191|147
SPIGMR | I0J | 36 306 355 | 687 1.94 | 156
SPIGMR | 103 | 16 311 366 | 755 2.06 | 16.5
SPIOM | I0J - 306 359 | 706 1.97 | 16.9
SPIOM |BDR | - 299 342 | 601 176 | 15.0

For the larger case p = 10 (s = 20) , We again restrict our testing to the SPIGMR
'method‘ and t-he DQJ option. The results are given in Table 3b. As before, both JOJ and
BDR have lower run times than OSS as preconditoners, despite a higher average Krylov
dimension. Also as before, block grouping is cost-effective, but by a much wider margin, »
because of the larger number of species and the DQJ option. With IOJ. there is a clearly
" optimal choice of 36 groups, whereas BDR is léss sensitive to the number of groups, wifch a
minimal run time at 16 groups. The total work space storage for SPIGMR-BDR. (16 groups)

is about 19.4 NEQ, or about half of that for SPIGMR-BDR without block grouping.
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TABLE 3b. RESULTS FOR PROBLEM 3 (p = 10)
‘Method | PRE | NGR | NST | NNI | NLI | AVDIM | RT
SPIGMR | 0SS - 322 | 367 | 466 127 | 541
SPIGMR | I0J . 318 | 363 | 658 |° 1.81 | 41.9
SPIGMR | I0J | 36 | 330 | 380 | 776 204 -|37.1
SPIGMR | I0J | 16 | 365 | 432 | 1044 | 242 |45.0
SPIGMR | BDR | - | 331 | 3g0. | 738 194 [ 46.8
SPIGMR | BDR | 36 | 323 | 371 | 715 | 193 [353
SPIGMR | BDR | 16 | 324 | 378 | 754 1.99 | 348
SPIGMR |'BDR | 9 349 | 407 | 933 229 | 40.2

7. Conclusion

Krylov subspacé‘iteration methods for Iine‘ar‘ systems can be combined védth Newton itera-
tion and the BDF methodtb obtain effective algorithms for stiff ODE systems. We have
shown how the Arnoldi/IOM, GMRES/IGMRES, and CG methods fit into such combi-
nations, aﬁd provided some theoretica,lvéupport for the combined linear/nonlinear iteratioﬁ :
when a ﬁnité—diﬁ'eren;e approximation is used for the linear operator. We have also given al-
gorithms for these methods tha,t include both scaling and preconditioning, and implemented
these in an experimeqtal solver called LSODPK. |

For some‘i)roblems, maihly those with ﬁnuch spectral clustefing,‘ the basic iteration

methods with only scaling added are sufficient. But for most problems, preconditioning is

' necessary to achieve robustness. We have constructed several preconditioner combinations

for reaction-diffusion problems, using the reaction and transport operators individually, or-
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in combination as in operator splitting, and using grouping of blocks of Jacobian elements
involved to achieve both storage and computational economies.

" The tests we have reported show that these methods are effective on at least a small set

‘of test problems. The optimal choices of method combinations depend on the nature of the.

problem, and may not be clear without experimentation. Preconditioning based on operator
splitting does well on most of PDE-based problems we tested, but not all. For some cases,

where diffusion and interaction terms are both equally dominant in the stiff part of the

problem, we found that neither the splitting approach nor one using either operator alone

seemed to do well.. In general, we found that SPIGMR is slightly preferable to'SPIOM, _

but thaﬂ; on problems where a symmetry assumption is true or a,pproxima,t_ély true‘} PCGor
SPCG can be more efficient. The same is probably true for the GCR (Generalized Conjugate
Residual) method, although we have not included that method in our t‘esting.

There are other types of preconditioners in use elsewhere that we have not yet studied,
but which might prove useful in connecﬁon with the methods used here. These include
block-SOR (which has had considérable success by‘itself Within BDF solvers), incomplete
LU or modified forms thereof (MILU), polynomial precénditioners (e.g. Chebyshev), and
Quasi-Newtoil (based on rank—one matrix updates). The block-diagonal préconditioners
would be;leﬁt greatly from a.. dynamic group selection scheme.

Finally, we hope to see these methods extended to other types of stiff ODE méthods
(e.g. implicit RK), and to implicit forms of ODE’s (e.g. Ay = g, or fully implicit systems),

and to differential-algebraic equations.
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