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1 Introduction

The modelling of laser systems often requires computational models where the intensities are
functions of wavelength. The intensities and the laser level populations all vary with spatial
position and with time. When the population rate equations involve an emission integral
over the relevant spectrum, then the equations form a system of integro-differential equations
(IDEs). We were faced with a problem of this sort, for which a one-dimensional spatial
domain is sufficient to model a laser oscillator bounded by two mirrors. We began preparing
a solution approach based on discretizing in space and frequency and using an ordinary
differential equation (ODE) solver for the time integration — an approach that is highly
successful for similar systems of time-dependent partial differential equations. In the process,
it became apparent that the approach is valid for a somewhat more general class of 1D
problems than the laser oscillator in question. That class of problems is specified in the next
section. The key feature is the coupling of two wavelength-dependent functions, representing
physical quantities (e.g. intensities) that are advected in opposite spatial directions, together
with a third quantity (e.g. a population) driven by a spectral integral as well as other source
terms. With the same formalism presented here, one can also solve considerably more general
forms of IDE systems.

The use of a semi-discretized system (with time continuous) and an appropriate ODE
algorithm for the time integration is called the Method of Lines [1], and is outlined for this
problem class in Section 3. The method derives its power from the fact that problem-specific
discretizations need only be done in space and (in this case) wavelength, while numerous
powerful ODE solvers are available to carry out the time integration. The issue of time
discretization errors is removed from the modelling effort, being reduced to the selection of
tolerance inputs to the ODE solver. The use of the Method of Lines to solve IDEs is not new
[2]. However, we believe the present treatment offers a significant advantage over previous
methods in our choice of an efficient, stiff-ODE solver.



The ODE systems that arise here turn out to be stiff, meaning that they include one or
more strongly damped (or rapid decay) modes, whose time scale is much shorter than the
time scale of the solution itself. This stiffness necessitates the use of implicit methods for
the integration of the ODE systems. However, the large problem size dictates the use of
iterative methods for the linear systems that then arise. Then besides choosing a suitable
ODE solver, success depends on providing a preconditioner to aid in the convergence of the
linear iterative method. We have developed a product preconditioner for the stated class of
problems, which has proven to be fairly simple to implement, and yet extremely effective in
the solution. It is inspired by the idea of operator splitting, but does not sacrifice the critical
element of error control. This preconditioner is developed in Section 4.

In Section 5, we present the application that led to this work. The specific problem
of interest involves a laser with a solid-state gain medium. The laser cavity has a mirror
whose reflectivity is a nonlinear function of the incident light intensity. The solid-state
gain medium has a fluorescence decay time (200-300 us) that is significantly longer than
the time required for the radiation to build up inside the laser resonator. For this reason,
these types of lasers typically exhibit transient instabilities at the onset of oscillation known
as relaxation oscillations which damp out as the lasing process proceeds. With a nonlinear
mirror, the relaxation oscillation produces temporal spikes that can be significantly enhanced
and do not damp out. There is interest in this type of resonator for a solid-state laser since
a nonlinear mirror based on stimulated Brillouin scattering (SBS) can potentially provide
the conjugation of the transverse modes of the counter-propagating radiation in the laser.
Furthermore, the peak intensity enhancement provided by the nonlinear mirror could improve
the laser’s application in certain materials processing applications. A numerical model that
helps tailor the design of the laser with respect to the peak output power and the temporal
width and spacing of the output pulses would be a valuable tool. The solution of the problem
follows the approach presented in the preceding sections, with some economies gained as a
result of certain features of the semi-discrete problem. Solutions are shown for the simpler
case with the nonlinear effect turned off, then with it turned on.

2 Problem Statement

We are interested in a system of integro-differential equations (IDEs) involving (as indepen-
dent variables) one spatial variable z in an interval z;, < x < zg, a wavelength A, and time
t. The dependent variables consist of two frequency-dependent quantities y™ and y~ and a
frequency-independent population N. The quantities y™ and y~ undergo advection in the
rightward and leftward directions (respectively) at a given speed v, and also reaction rates
R*. The rate equation for the population N includes a decay rate S which is an integral over
wavelength of the sum y* + y~, and a combinaton of other source and sink terms denoted
P. More specifically, y*(z, A\, t), y~(x, A\, t), and N(x,t) satisfy the following IDE system:

Oyt /ot +vdyT /0r = RT(y",N,)\) (1)
oy~ /ot —vdy~/0xr = R (y~,N,\) (2)
ON/ot = P(N,z,t)— NS[y*+y]. (3)
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The coefficient v and functions R* and S could also depend on z and t, but for brevity here,
this dependency is not shown. Boundary conditions on y* are posed in which each is given
as a function of the other at the appropriate endpoint, that is:

y+(xL, /\at) = fL[y_(xL’ *,t)], y_(xR’ )‘at) = fR[y+(xRa *at)] ) (4)

where each function f7, fr is an operator on the function y* that may involve its values at all
wavelengths A\. To complete the problem statement, initial conditions y*(z, A,0), v~ (x, A, 0),
and N(z,0) are to be given.

3 Method of Lines Approach

The idea behind the Method of Lines approach to this IDE system is to discretize it in the
space and wavelength variables, giving a system of ODEs in time that can be integrated by
a suitable ODE solver. Specifically, suppose that a mesh of M intervals is placed on the
z-interval, having the M + 1 meshpoints

Trp = %oy, 15, ---y TM-1, TM = TR -
Likewise, discretize the wavelength interval into K points, as
ALy, ey Ak

Neither of these meshes need be uniform. At each point z,, and each wavelength \; we have
discrete unknowns y;,’, , and y,, ,, and at each z,, we have an unknown N,,. At the interior
mesh points (0 < m < M) we obtain an ODE for each yfhk by replacing the advection term
in (1)-(2) by a suitable finite difference expression. For simplicity, we will use a simple two-
point upwind difference here, although a more sophisticated discretization (possibly even of
finite element type) could be used instead. Thus the ODEs from (1)-(2) are

dy:;,k/dt + /U(y:z,k - y;—l,k)/Axm—l = RT (yr—:,lc? N, 1), (5)
dy;z,k/dt - U(yr;—{—l,lc - y;z,k:)/Axm R (Z’/;n,lm Npn, 1) (6)

To discretize the population equation (3), we must represent the integral operator S
in terms of the discrete unknowns. For this we use the Trapezoid Rule, though a more
complicated quadrature could be used if needed. Thus in the case of a uniform wavelength

mesh, we use
K-1

L7 10 = AN On/2+ T 00+ F)/2 0

k=2
applied to the integrand f in the operator S. If the resulting value of S at z,, is denoted
by Sm, then we have an ODE for N, at each mesh point (including the boundaries) of the
form

ANy, /dt = P(Np, T, t) — NyuSi - (8)
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Finally, the boundary conditions (4) become equations in the discrete variables of the
form

Yo = fkWors - Yox) and  Yurp = Frr(Yars, - Yirk) - (9)
These equations complete the posing of Eq. (5) at m =1 and of Eq. (6) at m = M — 1.

We now have a “semi-discrete” system, i.e. a set of ODEs in time which have been
discretized in space and wavelength. This set consists of three subsets of the above equations,
namely: (a) Eq. (5) form =1,...,M; (b) Eq. (6) form =0,...,M —1; and (c) Eq. (8) for
m =20,..., M. We write this system in a more compact form as follows. At the mth spatial
point, define two vectors of size K,

U = Wi -+ Ym)"

Then at z,, we have a block of dependent variables

Ym = Uy Yy Ni)T

except that at the endpoints m = 0 and m = M one of the two vectors y= is absent, by
virtue of the boundary equations (9):

yO:(yO_7NO)T: yM:(y}\'—/I:NM)T .

The full dependent variable vector is

Y:(yOa Ty yM)T : (10)
Its size is N = 2K M + M + 1. The full set of ODEs can be written simply as
Y =dY/dt=F(t,Y) . (11)

The vector of initial values, Y (0) = Yj, is given, and we seek the solution of the initial value
problem on some time interval 0 < ¢ < %,,45.

An important property of ODE systems that arise in this manner is “stiffness.” An ODE
system is stiff if it includes one or more rapid decay modes whose smallest time constant
is very small compared to the time scale of the solution of interest. In discretized spatially
dependent problems, stiffness often arises from the discretized spatial operator involved,
and it can also arise from the other rate terms present (such as R* here). This issue is
important because if a nonstiff time integration method is used to solve a stiff system, it
must be restricted to step sizes that are much smaller than necessary to resolve the solution
accurately. The application given here is quite stiff, as we have learned by doing just such
an experiment. In our case, the source of the stiffness can be traced to the advection terms.

The solutions also have oscillatory modes, which can take the form or periodic narrow
spikes in time. But the time scales on which these spikes are resolved are still much longer
than the time scale of the most rapid decay modes. The decay modes are absent in the
solution, except for an initial fast transient, but their presence at all times in the ODE
system itself makes it stiff.



Fortunately, a number of solver packages are available for the solution of stiff ODE initial
value problems. Some are more suitable than others for the case of large systems that
arise from PDEs or (as in this case) IDEs. The solver we have chosen is VODPK [3], a
“Preconditioned Krylov” variant of the general-purpose solver VODE [4]. Our reasons for
this choice will be made clear after the following short summary of these solvers.

Both of the solvers VODE and VODPK include two basic numerical methods for ODE
systems (11). One is based on Adams-Moulton formulas, and is useful only for nonstiff
problems. The other is based on the backward differentiation formula (BDF), and is the one
of interest here. Both are implemented in a variable-stepsize, variable-order form. The BDF
method uses the formulas .

Yn = Z Qn,iYn—i + hnﬁn,OYn ) (12)
i=1
where the N-vector Y, is the computed approximation to Y'(¢,). The stepsize (which can
vary at every step) is hy, = t, —t,_1, and the coefficients o, ; and 3, o are uniquely determined
by the order ¢ and the history of the stepsizes. The integration begins with ¢ = 1, and after
that ¢ varies automatically and dynamically between 1 and 5. Since Y, denotes F (tn, Yn),
Eq. (12) is an implicit formula, and the nonlinear equation

G(Yn) = Yn - h’nﬁn,OF(tna Yn) — Qp = 0 (13)

must be solved for Y,, at each time step, where a, = >/, a,;Yn—;. For stiff problems, a
Newton iteration is used to solve (13), and for each iteration an underlying linear system
must be solved. This linear system for the Newton correction has the form

AlYair41) = Yom] = =G(Yawm) (14)
where Y, is the rth Newton iterate approximating to Y;, and

oG oF
A=—==1—-~vJ J=— =h .
8Y fY I 8Y I ’7 nﬂn,o
An initial guess Y, (also accurate to order ¢) is easily formed explicitly from past values
Y,,_;. Depending on the particular method options chosen, the N x N matrix A may only

be an approximation to I — v.J.

The integrator computes an estimate of the local errors at each time step, and strives to
keep these below a certain tolerance. This error control uses a mix of relative and absolute
tolerance terms, where the tolerances themselves are supplied by the user. During the course
of the integration, VODPK will vary both the stepsize h, and the order ¢ in an attempt to
produce a solution with the minimum number of steps, but always subject to the local error
test. See [4] for details.

The VODE solver uses only direct methods for the linear systems (14), and is precluded
here because of the large size of our problems. In contrast, VODPK uses an iterative method,
in which costs can be kept at a tolerable level by exploiting the structure of the problem.
That iterative linear system method is based on the GMRES (Generalized Minimal Residual)
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Method [5], one of the so-called Krylov subspace iterative methods. The actual algorithm
in VODPK is called SPGMR: Scaled, Preconditioned GMRES [6]. The user of VODPK
may precondition the system on the left, on the right, or on both the left and right. Each
value of the preconditioner is saved for repeated use over as many Newton iterations and as
many time steps as possible. For similar problems in the past we have used LSODPK [6], an
analogous preconditioned Krylov variant of the solver LSODE . But here we chose VODPK
over LSODPK because the variable-step formulas underlying VODE and VODPK are likely
to be more robust for these oscillatory problems than the fixed-step-interpolate formulas in
LSODE and LSODPK.

4 Preconditioning

Although not required as input to VODPK, a preconditioner is usually necessary for efficiency
in the solution of the linear systems (14) that arise, which we write here simply as Az = b.
A preconditioner is a matrix P that approximates A in some sense (possibly only crudely),
but for which systems Px = b can be solved reasonably efficiently. Given a preconditioner
P, we apply the GMRES method either to the equivalent system (P~1A)z = P~'b (for left
preconditioning), or to the system (AP~')Pz = b (for right preconditioning). In addition,
we scale the iterative method, to account for differing orders of magnitude, and possibly
different physical units, in the various components of the vectors = etc. Here a diagonal
matrix D is defined by way of tolerances supplied by the VODPK user, such that any error-
like vector z is measured in terms of the weighted L2 norm || D~'z||,. Then in the SPGMR
algorithm, the GMRES method is actually applied to the system A% = b in which

D'PT'AD, #z=D7'z, b=D"'P ' (left preconditioning) ,
= D 'AP'D, &=D7'Pz, b=D"'b (right preconditioning) .

NS N
I

The characteristic feature of a Krylov subspace method is that the system matrix is
never needed explicitly, but only as an operator; that is, only its action on any given vector
is needed. Thus the SPGMR method requires the action of the matrix A, or the value
of matrix-vector products Av. The action of the factors D and D~ is trivial. Using the
relations A = [ —+J and J = 0F/0Y, we approximate the action of A by way of a difference
quotient approximation:

Av=v—~Jv, JuorI[F(t,Y +e)—F(t,Y)]/e,

for a suitably small e. What remains is perhaps the most difficult part of the SPGMR
method — defining and computing the action of P!, which means solving linear systems
Pz =b.



4.1 Jacobian structure

To approximate A = I — v.J, a good preconditioner must include the numerically dominant
contributions to the Jacobian J, but in a manner that permits efficient solution of the
corresponding linear systems. To balance these two conflicting demands in the case of a
large ODE system, it is essential to identify and exploit the sparsity structure of J. For
the semi-discrete IDE systems here, J has contributions from the advective transport terms,
the interaction terms on the right-hand side, and from the boundary conditions. More
specifically, writing
J =00, 91, Ym) /Yo, Y1 - - -, Ynr)

we regard J in block form with M 4 1 blocks in each direction, the dimension of each block
being 2K + 1 (in the interior) or K + 1 (at the edges). The diagonal blocks J,, = 0Ym,/OYm
each have a bordered-diagonal structure,

J 0 g
I = 0 Ji- JE 0<m< M), (15)
J: g3 gt

_ _ 1+ 72+
Jo = J03 JO4 VS JA:;I JJZI .
S5 Jo I JIu
Here JLT and J!~ are diagonal matrices of size K with elements OR*/0y™ — v/Ax,,_1 and
OR™ /0y~ —v/Ax,,. J3 and J%~ are column vectors of size K with elements OR*/ON. J3,
tot tot

is a row vector of size K with elements —N,,0S]y,>']/ 0y, (The same row vector appears

in two positions in .J,, because S depends only on the sum 32 =y +y). J? is the scalar
OP(Ny,, Ty t)/ONp — Sy

The off-diagonal blocks of J come from the advection terms and from the boundary
equations. Those from the advection are diagonal matrices of size K,

At =0yt/oyt (2<m< M), A =0y /0y, ., (0<m<M-2), 16
m m m—1 m m m—+1

with elements v/Az,, ; and v/Ax,,. Those from the boundary equations (9) are matrices
of size K,

v

Aov dfr(yar) /0y , (17)

. _ (% _ _ .
B = 89?/8’90 = —8fL(yo )/3% , Br= 8’!/M—1/ay;\rxf =
Aﬂfo

which may well have a non-diagonal structure.

4.2 Forming a preconditioner

A natural and powerful way to form preconditioners for complex systems is to form a pre-
conditioner for each of two or more parts of the problem, and multiply these together. The
resulting product preconditioner is the product of matrices of the form I —~.J, in which each
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factor J includes certain parts of J, and when added together the matrices J include all of
the numerically important contributions to J. This idea has been explored extensively in [6]
for the method of lines solution of reaction-transport PDE systems. For the present system,
although there are many choices for the splitting of the Jacobian, we have made the specific
choice

P = Padvechorder = (I - 7Jadvec)(l - 7Jborder) ; (18)
where

® Juavec includes the advection contributions, an approximation to the boundary equation
contributions, and the self-couplings J'*, while

® Jyorder 1S @ block-diagonal matrix with bordered-diagonal blocks consisting of the con-
tributions J2£, J3  and J4i.

It is the factor Jyprger which includes the contribution of the spectral integral S in Eq. (3).

Since P = I — y(Jadvee + Jporder) + O(7?), and 7 is proportional to the stepsize h,, we
can expect P to be a good approximation to A = I —vJ at least for small enough stepsizes.
In fact, we find that it performs very well for large stepsizes also. Further justification for
this choice can be found by looking at the error term, v2J,gvecJporder- For this, consider the
problem with the dependent variables ordered as Y = (Y*+,Y~, N)T, where each Y* consists
of all the y,in,k and N consists of all the N,,,. Then the Jacobian takes the block form

. Ju 0 Jis
J = 0 Jyo Jos
Js1 Jz2 J33
In this ordering, the chosen splitting corresponds to
R J11 0 0 R 0 0 J13
Jadvec = 0 Jap 0 ) Jborder = 0 0 Jo
0 0 0 Js1 Jza J33
The product of these matrices,
A . 0 0 Juudis
Jadvechorder = 0 0 JaJos )
0 0 0

has nonzeros in only two of the nine block positions. This suggests (but does not prove)
that the error in the corresponding product preconditioner may be smaller than for other
splitting choices, which produce nonzeros in other blocks of the product.

For all of these Jacobian contributions, it is sufficient to use approximations to the true
Jacobian elements, because of the way they are used within the GMRES iteration. Moreover,
it can be highly beneficial to do this if the savings in computation and/or storage outweighs
the increase in number of iterations required for convergence. In our case, for example, it
might be useful to replace the true value of the boundary equation Jacobian blocks By and
Bp, in (17) by sparse approximations to them, or to replace the diagonal terms dR* /0y* by
less costly approximations, depending on the complexity of the functions involved.



4.3 Solving the preconditioner systems

The solution of the preconditioner linear systems is split into two phases. First, we evaluate
the factors of P and preprocess them in preparation for solving the linear systems later.
Then each linear system P,gyecProrder® = b is solved, by solving two systems in succession,
using the data saved from the preprocessing phase. The VODPK solver calls the routines
that execute these two phases as needed, and it calls the (more expensive) preprocessing
routine much less frequently than the solution routine.

For the block-diagonal matrix
Poorger = diag{Bo, By, ..., BM} )

the preprocessing consists of performing an LU factorization of each block B,,. By con-
struction, we have By, = I — vJy porder Where Jy, poraer is Jr, with the diagonal pieces J}ni
removed. (We use I here to denote the identity matrix of the appropriate order, which may
vary according to context.) This matrix actually has a bordered-identity form

1 ap

B, =
1 a,
by --- b, c

of size n + 1 with n = 2K or K. The LU factorization of this matrix is simply

1 1 ay
. . . n
B, = o o : with ¢ =¢c— Y a;b; .
m 1 1 an ; Y
b e by 1 ¢

Solving a linear system Pyy.qerx = b amounts to solving the blocks B,,x,, = b,,, which is
easily done with backsolve operations using the saved LU factors.

For the factor P,ge., a block-LU treatment is possible, but for this it is helpful to look at
a reduced and reordered form of the system. Note that J,4.e. does not involve the variables
N, at all. The corresponding equations in the system P,g...x = b have the trivial form
z' = ' (using superscripts to denote components), and so we can drop those components
from consideration. Also, because the couplings from advection are in alternate directions
(g, to y,f_y and ¢, t0 Yy, 1), the structure of Pgye. is greatly simplified if we consider, for
the purposes of solving this system, the ordering

Y: (yl_: y2_a st y]T/[fla y}\t[a yj—i\—lfl’ ttt yika y()_) (19)

of the unknowns, instead of that in (10). With this ordering for both the b and z vectors,
and the components corresponding to N, dropped, the linear system P,4,.x = b takes the



form P,gyecZ = b with Pogyec = I — Y Judvee and

JiT AY
Ao
i Ji-1  Br
Jadvec = JJ%;_ A+M ) (20)
A
Jit B
Ay Jo~

in terms of the matrix blocks defined in Eqs. (15)-(17). This matrix P,gy. is nearly a block-
bidiagonal matrix, differing only in the presence of the corner block A;. Such a matrix is
called bordered-block-bidiagonal. For a general matrix of this form,

D, ¢

) (21)

a block-LU factorization can be easily performed, provided that all the D; are nonsingular.
The result is:

D, I C]
H= R , (22)
El e En—l En I
where the blocks in the factors are given by:
C:IL - Dl_lcl gy eee C’:Lfl - D;EICnfl 3
E1 = Cn ) E2 = —ElC{ g eee g En—l = —En_QC;_Q ) (23)

In our case, n = 2M in (21), and all the matrix blocks are K x K. Furthermore, all the
blocks in H are diagonal except possibly for Cys—y = —yBg and Cypr—1 = —yByp, and this
fact can be exploited to reduce greatly the cost of the operations in (23). Once this block
factorization is done, and provided also that the block E,, is nonsingular, then solving a
linear system P,g4,..x = b reduces to block-backsolve operations in the blocks of b and z
corresponding to the y . These can be carried out without any explicit reordering of the
vectors, simply by observing the order of the blocks in (19).
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5 An Application

As an application of the formalism developed in this paper, we shall take an example from
laser physics and model the behavior of a laser oscillator with a nonlinear mirror on one
end. Such a situation is encountered when one constructs such an oscillator with a phase-
conjugate mirror [7, 8]. These types of lasers are useful when it is desired to have an output
beam free from aberrations caused by the laser medium, and usually the phase conjugation
is achieved through a nonlinear process such as stimulated Brillouin scattering (SBS). To
keep the application simple, we shall limit our model to a rate equation/intensity formalism.

5.1 Problem statement

The geometry for the laser is shown in Figure 1, where, for simplicity, we shall consider only
one-dimensional propagation of the laser beam. The laser cavity itself has length L. and the
two (linear) mirrors defining the cavity have reflectivity Rjp and Rs. All physics of the SBS
process is grouped into an intensity and wavelength-dependent reflectivity, Ri;, which is at
the same location as Rip. The laser medium has a length L, and is pumped uniformly in
space at a time-dependent intensity I, (W/cm?). Within the cavity are circulating spectral
intensities 7} (i, ) (W/cm?-nm), which move in the positive (negative) z-direction. In oper-
ation, laser oscillation builds up between the cavity mirrors Ry and Ry. Once the intensity
builds up above threshold for R, oscillation starts taking place between that mirror and
R,.

In SBS, light that gets reflected back into the cavity is wavelength-shifted by an amount
equal to the Stokes shift of the SBS medium. Consequently, it is important to formulate the
rate/transport equations describing the laser to explicitly take into account the wavelength
dependence of the emission cross-section. As a representative laser medium, we shall consider
Nd-doped Gallium Gadolinium Garnet (Nd:GGG), which has an emission wavelength of 1062
nm. To further simplify the analysis, we shall assume Nd:GGG acts as a four-level laser. In
general, the decay times from the pump bands to the upper laser level, and from the lower
laser level to the ground state, are at most a few nanoseconds (and typically much more
rapid) [9]. Since the time scale of interest is on the order of 100 microseconds, we only need
consider a rate equation for the upper laser level (which is directly populated by the pump).

In dimensional form, the rate and transport equations for Ny(z,t) and 47 (z, A, t) read

N. oNol,(t N. N, -1077
Oy _ lb®) Mo N 10T g )G +ip)an,

ot th tF he mband
0iy  noif L :
£SL L DT = o )Nl + 5 V)](La/ L) — 0 (La/ L) (24

where N, is the population of the upper laser level (cm=2); N, is the population of the
ground state (assumed constant, equal to the doping density); A is Planck’s constant (J-sec);
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v, is the pump frequency; o, and o, are the absorption and emission cross sections (cm?);
tr is the fluorescence lifetime (sec); i are the forward and backward-going light spectral
intensities (W/cm?nm), and n is the refractive index of the laser medium. The integral in
the first equation is performed over the emission band. The factor 10”7 (cm/nm) allows us to
express wavelengths in nm, while the spectral intensity has units W/cm?nm; L, and L, are
the lengths of the active region and the cavity respectively (cm); and i%()) is the effective
noise source (W/cm?-nm), which initiates the lasing process. For the simple application given
here, we shall take zi to be a constant, independent of position or wavelength. Finally, the
factor o (cm™1!) represents any losses in the active medium.

In reality, there are many lines in the *F3/5 —*I11/, transition in Nd:GGG [10]. However,
to keep the application simple, we shall only consider the emission at 1062 nm in these
calculations. The emission lineshape is taken to be a Gaussian with peak value o and

FWHM A\ (= vIn2 ~ .83 nm):

os(\) = ogexp[—4In2(\ — A\g)?/AN?] .

Instead of dealing with the dimensional form of Eqs. (24) directly, it is more useful to cast
them in non-dimensional form. The details of the non-dimensionalization of the equations
are given in the Appendix. In terms of a dimensionless coordinate £ varying between 0 and
1, a dimensionless time 7, and a dimensionless wavelength A varying between A, and A,,
the normalized dependent variables are 7(¢,7) and yjf (€, A, 7). The resulting model may be
written simply as

877 Au —_A2 + _
o = y,,(T)—an/Al e (yf +vi) dA| (25)
319; ai’/;zt _ A2 (£ + 1+
o TP T yne (yz + yzv) -y, (26)
where o/, 3,7, and yf, are constants. We have taken Ay, = —2 and A, = 2 here.

Now consider the boundary conditions. At the left boundary, in terms of the original
variables, we have

ZZ(.T = 0, )\,t) = RIO(]- — Rll)’be_(.f = 0, /\, t) + Rllz[(m = 0, A + d/\S,t) s (27)

where d\, is the Stokes shift. Here R;; is a reflectivity function that depends on the total
intensity of the left-going laser radiation at the left endpoint,

I = / i7 (0, \)d\ (W /cm?) .
emband

In terms of the normalized intensity y, , Ry; is a function Ry; (Y, ) of the normalized total
intensity

Ay
Yi =I5 /L = / v (0,A)dA , where I, = hwy/oote , (28)
A

£
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and vy = 107¢c/ )\ is the center frequency of the laser emission. For this function, we used a
model that has been heuristically found [11] to fit well to observations, namely

s/stn+6.2

slsn—l - for ¢ > g
0 otherwise

Ry1(s) = (29)
where s, is a dimensionless constant related to the beam area and the SBS threshold power.
Note that the expression (29) neglects the initial turn-on transient. For liquid SBS media,
this assumption is justified insofar as the Brillouin scattering lifetime is on the order of 1-2
ns. Thus the left boundary condition (27) can be written

Yo (0,A) = Ruo[l = Rit(Y7)lyg (0, A) + R (Y )y (0, A+ dAs) (A < Ay — dA,)(30)
ye (0,A) = Rio[l — Ru(Yy)]yy (0,A)
for all normalized times 7. In the discretization, we will choose the discrete wavelengths
such that Axy1 — Ay exactly equals the non-dimensionalized Stokes shift dA;. Then in the
discretized form for (30), where y, (0, A) becomes y;;, the shifted value y, (0, A+dA,) simply

becomes y, ;. The integral defining Y7~ in (28) is evaluated by means of the trapezoidal
rule, as in (7).

The boundary condition at the right end is simply
iy (x = Le, M\ t) = Roif (x = Le, A\ t) (31)
which may be written in terms of the normalized quantities as
ye (1,A) = Rayy (1,A) (32)
for all normalized times 7.

The initial conditions we pose are simply flat zero values at time 7 = 0: n({,7 =0) =0,
v (&,A,7=0) =1y, (§,A,7=0)=0.

To complete the specification of the non-dimensionalized problem, we used the following
numerical values: y,(7) = yy0 = .018, a constant; o/ = .046; 8 = 1.35-10~% ~ = 600;
Yyt =7.3-107% yy =8.8-10"7; and sy, = .073.

5.2 Solution

The system (25)-(26), together with the boundary equations (30) and (32), clearly fits the
general form of the IDE system (1)-(4), with y, 5, €, 7, and A taking the roles of y*, N, z,
t, and \. As detailed in Section 3, we used the method of lines procedure to discretize this
system. In both space and wavelength, a uniform grid is appropriate for this problem. We
found that M = 50 intervals were sufficient to resolve the spatial variation. Our wavelength
mesh size was based on the chosen range of +1 nm from the center )y of the emission
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spectrum. Coupled with the Stokes shift of d\; = .01 nm, this determines the value K =
201 for the number of discrete wavelength points. The corresponding normalized shift is
dAs = .02. The integral on the right in Eq. (25) is evaluated using the trapezoidal rule (7).
The total size of the resulting ODE system is N = 20, 151.

We solved the ODE initial value problem with the VODPK solver in the manner described
in the preceding sections. We used a preconditioner matrix of product type as shown in (18).
Although left or right preconditioning would be equally valid, we chose right preconditioning
based on experience with previous problems of this type. In our case, because the spatial
mesh is uniform and v = 1/8 is constant, some simplifications occur in the matrix Jadvec
of (20). The two blocks J* and J!~ are equal, and each block A is a scalar matrix,
(BAz)7'I (a scalar multiple of the K x K identity matrix). The block Bg is also a scalar
matrix, (Ry/BAx)I, resulting from the simple reflective right boundary condition (32). The
block By, arising from the Jacobian of the right-hand side of the left boundary condition
(30), is actually a full K x K matrix. But it is well approximated by the upper bidiagonal
matrix

1 leO(1 - Rll) Rll

By, = @ . | . , (33)
with constant values on the diagonal and superdiagonal. As a result of these features, in
the block-LU operations in (23), we do not need to store and save explicitly many of the
matrices. Of the matrix blocks shown in (22), we actually store only the M + 1 distinct
diagonal matrices D,, (overwriting these with their inverses), the bidiagonal matrix C},_, =
—’yD;]&[leL, the diagonal blocks FEj, ..., Fopr 1, and the bidiagonal matrix Fy,. From
these, the solution of preconditioner linear systems P,g...x = b is easily carried out. The
storage cost for the entire preconditioner is 6M K + O(M)+ O(K) (about 3N) real words.

The equations in this application are sufficiently uncomplicated that the various Jacobian
blocks shown in (15)-(17) and (33) could be evaluated analytically. However, for a more
complicate problem, this might not be feasible, and a difference quotient procedure could be
used instead.

Once the model representation and the preconditioning were implemented in a Fortran
user code, we obtained solutions with VODPK easily. We have run a number of cases, but
will show here the results for only one. In what follows, we have used values Ry = 0.4, and
Ry = 0.25.

Figure 2 shows the temporal histories (for the first 150 usec) for the case where the SBS
mirror is turned “off,” by making s;, in Eq. (29) extremely large. The solid curve is the
output laser light intensity, defined as (1 — Ro) T, [ y/ (€ = 1,A,7) dA. Also shown in the
figure (dashed curve) is the gain coefficient, g = 0oNon(§ = 1,7) = 09Na(Le,t). In this
regime, the laser oscillates solely between the two linear mirrors and the gain coefficient
(and the laser intensity as well) exhibit relaxation oscillations (see, for example, [12]). At
long times, the system settles down to its steady-state, at which the output light intensity
is .028MW /cm? and the gain coefficient is .039 cm™".
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When SBS is turned “on,” the temporal histories of the same two variables are as shown
in Figure 3. Note now the presence of relaxation oscillations has disappeared, and the output
consists of a sequence of evenly-spaced spikes. Note also that the intensity/spike is roughly
a factor of 10 times greater than when SBS is off. Examination of the gain coefficient as a
function of time shows that there is greater extraction of the energy in the upper laser level.
These characteristics are in agreement with experimentally-observed results [13]. With SBS
off, there was some residual light in the cavity, as may be seen by the ever-increasing baseline
in Figure 2. With SBS on, there is essentially no light between pulses as indicated by the
zero baseline.

Finally, in Figure 4 we show, on an expanded time scale, the laser output intensity and
gain coefficient for the first pulse in Figure 3. We see that the FWHM of the pulse is about
240 ns, which is entirely consistent with the amount of energy extraction and the relatively
long cavity length. The laser model considered in this application assumes oscillation on
a single longitudinal mode. Consequently, mode-beating effects (which would show up as
oscillations in the pulse of Figure 4) are absent.

Overall, the VODPK integrator has performed very well on these problems. The case just
described, with M = 50 and SBS turned on, was integrated to a final time of ¢ ¢, = 400usec
(final normalized time 7fing = 5/3) on a Sun 296 MHz UltraSparc, with a total memory
requirement of 8 million double precision words. The performance statistics for this run are
shown in Table I, in the column under M = 50. The step count NST may seem high, but was
fully appropriate for the accurate resolution of the laser oscillations. The average number
of Newton iterations per step (NNI/NST) and of linear iterations per Newton iteration
(NLI/NNI) were both only slightly larger than one, and each preconditioner evaluation
lasted an average of 7.9 steps (NST/NPE). These figures indicate that the BDF integration
method is performing very well, and that the quality of the preconditioner is extremely high.

Table 1. Performance statistics for SBS model with two mesh sizes

| Mesh size M | 50 | 100 |

NST = no. time steps 4535 5631
NFE = no. evaluations of right-hand side function F' | 12,364 15,020
NPE = no. evaluations of preconditioner P o973 648
NNI = no. nonlinear (Newton) iterations 5487 6724
NLI = no. linear (SPGMR) iterations 6873 8292
NPS = no. preconditioner linear system solves 11,706 14,251
CPU time 4.96 min. | 13.5 min.

If one doubles the mesh size to M = 100, the solution does not change significantly,
and the statistics are given in the last column of Table I. For this case, the average number
of Newton iterations per step (NNI/NST) and of linear iterations per Newton iteration
(NLI/NNI) remain about the same as for M = 50. However, the number of steps per
preconditioner evaluation (NST/NPE) increased from 7.9 to 8.7.
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The presence of periodic fine structure in the time history of the solution might suggest
that the problem may not really be stiff. To settle this question, we made a run for the
case M = 50 with the nonstiff method option in VODPK. This uses variable-order Adams-
Moulton methods, and involves no linear algebra. This run took 878 min. on the same
machine (177 times that of the stiff method run), 1,540,920 steps (340 times higher), and
2,923,419 F evaluations (236 times higher). The average cost of a nonstiff step is lower than
that of a stiff step, but only by a factor of about 340/177 = 1.9 (attesting to the effectiveness
and efficiency of the preconditioned iterative method). Outweighing this is the restriction
on step sizes forced by stiffness (tfina/NST ~ .26 ns), which raises the total cost for the
nonstiff method far above that of the stiff method.

6 Conclusions

We have shown how a simple extension of the Method of Lines may be used to solve a certain
class of IDE systems. The success of this method lies in the choice of an efficient ODE solver
to handle the (usually stiff) system of ODEs. Emphasis has been placed on the formation of
the preconditioner in product form, the use of which greatly improves the efficiency of the
ODE solver. The spectral integral in the problem has its impact in the second preconditioner
factor, which consists of bordered-diagonal matrices.

The philosophy behind the product preconditioner is similar to that in operator splitting
(or fractional step) approaches to time-dependent problems, wherein each fractional step
involves only a part of the problem. The difference here is that the approximation of the
Newton matrix A by the product P is done within a Krylov iteration for the solution of
a linear system, within a Newton iteration for a nonlinear system, within an integration
time step, and each of these three iteration levels involves a convergence test to control the
errors being committed. In contrast, traditional operator splitting involves no iteration and
no error control. Certainly other choices for the product preconditioner are possible, using
different splittings of the Jacobian, or using more than two factors. However, because of the
success we have had with the present choice, we have not explored alternatives.

Besides the application presented in the previous section, other areas of laser physics that
can be addressed with the same solution methodology include mirrorless lasers, amplification
of broad-band laser radiation, and gain-switched laser oscillators. It would be easy to extend
the solution approach to systems with multiple population variables; the bordered-diagonal
matrices would then have borders wider than one, but an analogous LU solution could still
be used. It would also be easy to extend the approach to bi-directional IDE systems in
two space dimensions. This would increase the problem size and expand the preconditioner
factor based on the advection terms, but would not alter the basic methodology.
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Appendix: Non-Dimensionalization of Laser Equations

Let us define a dimensionless wavelength
=Vv4In2(A — X)) /AN
then the integral in (24) is

/ _ A)\QJO Ay At vV4ln2\g A2 (
mband A)\

41n2 Ja,

i +Ze) dA .

Since AN\ is so small, for any reasonable integration range, the second term in parenthesis
will dominate. Thus we take

AAO'() Ay —A2 (. o
=———)\ e iy +i, ) dA .
/emband vV 4In2 0 Ay ( ¢ ¢ )

If we now define a spectral saturation intensity

hev41n2 - 107 B v4In2

) = = I 2_
bsat O'())\()tFA)\ A/\ sat (W/Cm nm) ’

and define scaled intensities by 37 = i} /i, then the rate equation may be written

ONy o, NoL(t) N A o
2=72 OP()——?[H/A et (y?-i-ye_)dA].
£

ot hy, tp
If we define o,
Ip,sat = Ua—tF
and the dimensionless variables
T=t/tr n= No/Ng , and Yp = L/ Ly sat
then the first of Eqs. (24) may be written
% =yp(1) =7 ll + /A t e (v + ) dA] : (34)

Now look at the transport equation, the second of Eqgs. (24). Divide both sides by 4,
and write

E=zx/L,, v = ooNoL, o =al, , B =nL./ctr .
Then the transport equation may be written
8y oyF
aé + Bt = mme™ (v +uv) — o'y (35)

where 7 is the (normalized) noise source 3 /i5q;. Equations (34) and (35) are the normalized
equivalent of Eqgs. (24).
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Figure Captions

Figure 1:
Geometry for the laser.

Figure 2:
Laser light history (solid curve) with SBS turned off.
The dashed curve is the gain coefficient.

Figure 3:
Laser light history (solid curve) with SBS turned on.
The dashed curve is the gain coefficient.

Figure 4:
First SBS pulse on an expanded time scale.
The dashed curve is the gain coefficient.
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Figure 2: Laser light history (solid curve) with SBS turned off.
The dashed curve is the gain coefficient.
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Figure 3: Laser light history (solid curve) with SBS turned on.
The dashed curve is the gain coefficient.
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Figure 4: First SBS pulse on an expanded time scale.
The dashed curve is the gain coefficient.
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