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Abstract

Techniques based on thresholding of wavelet coefficients are gaining popularity for denoising data.
The idea is to transform the data into the wavelet basis, where the “large” coefficients are mainly the
signal, and the “smaller” ones represent the noise. By suitably modifying these coefficients, the noise
can be removed from the data. In this paper, we evaluate several two-dimensional denoising procedures
using test images corrupted with additive Gaussian noise. We consider global, level-dependent, and
subband-dependent implementations of these techniques. Our results, using the mean squared error as a
measure of the quality of denoising, show that the SureShrink and the BayesShrink methods consistently
outperform the other wavelet-based techniques. In contrast, we found that a combination of simple
spatial filters led to images that were grainier with smoother edges, though the error was smaller than
in the wavelet-based methods. *
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1 Introduction

With sensors becoming ubiquitous and computers becoming more powerful, scientists are collecting and
analyzing data at an ever increasing pace. In many fields such as astronomy, medical imaging, and computer
vision, the data that is collected is often noisy, either as a result of the data acquisition process or due to
natural phenomena such as atmospheric disturbances. This noise must be removed from the data before it
can be analyzed.

Removing the noise from data can be considered as the process of constructing optimal estimates of
the unknown signal from the available noisy data. There are several different ways in which this denoising
can be done. In this paper, we investigate wavelet-based techniques for denoising, focusing on shrinkage
methods. The basic idea behind these techniques is to use wavelets to transform the data into a different
basis, where “large” coefficients correspond to the signal, while “small” ones represent mostly noise. The
wavelet coeflicients are suitably modified and the denoised data is obtained by an inverse wavelet transform
of the modified coefficients.

In our work, we consider two dimensional versions of methods that were originally developed for one-
dimensional signals in [1, 2, 3, 4, 5] and compare them to the method proposed for images in [6]. Using
decimated wavelet transforms, and the mean squared error optimality criterion, we evaluate the different
methods on test images corrupted with additive Gaussian white noise. Our goal is to address several issues.
First, we want to better understand the sensitivity of the different methods to the choice of wavelet filters,
the number of multiresolution levels, and the values of the parameters in each method. Second, we want
to identify techniques that perform well across a variety of images and noise levels. Third, in contrast with
other work, we want to explore the effect of different ways of modifying the wavelet coefficients for each
method. By calculating and applying the modifications either globally, in a level-dependent manner, or in
a subband-dependent manner, we hope to fine-tune the wavelet denoising to an image. Finally, we want to
compare and contrast these wavelet-based techniques with the more traditional approaches based on spatial
filters. Our goal is to complement the extensive theoretical and algorithmic work presented in the literature
with a more practical, implementation-oriented comparison that would guide a practitioner in the choice of
a method.

This paper is organized as follows. Section 2 gives a brief introduction to various denoising methods,
followed by a detailed description of denoising through the shrinkage of wavelet coefficients. We describe the
options available for such techniques and the different methods used to implement each option. Section 3
reports the results of the wavelet-based denoisers on test images with varying levels of additive white Gaussian
noise. In Section 4, we compare the wavelet-based techniques to the more traditional approaches to denoising
based on spatial filters. Finally, in Section 5, we conclude with a summary and our plans for future work.

2 Techniques for Removing Noise from Data

Spatial filters have long been used as the traditional means of removing noise from images and signals [7].
These filters usually smooth the data to reduce the noise, but, in the process, also blur the data. In the
last decade, several new techniques have been developed that improve on spatial filters by removing the
noise more effectively while preserving the edges in the data. Some of these techniques borrow ideas from
partial differential equations and computational fluid dynamics such as level set methods [8, 9], total variation
methods [10, 11], non-linear isotropic and anisotropic diffusion [12, 13], and essentially non-oscillatory (ENO)
schemes [14]. Other techniques combine impulse removal filters with local adaptive filtering in the transform
domain to remove not only white and mixed noise, but also their mixtures [15]. A different class of methods
exploits the decomposition of the data into the wavelet basis and shrinks the wavelet coeflicients to denoise
the data [1, 2, 3, 4, 5, 6, 16, 17]. While this is typically done using the more memory efficient decimated
wavelet transforms, it is well known that the use of non-decimated transforms minimizes the artifacts in the
denoised data [18, 19]. Other authors have combined wavelets with Hidden Markov models and spatially
adaptive methods [20, 21, 22, 23, 24, 25, 26], or used other basis functions such as ridgelets and curvelets
[27, 28] that can be more effective than wavelets for images and higher dimensional data.

All these, and other, techniques have made image denoising a very active research area. However, what is
lacking is a thorough comparison of the advantages and disadvantages of the different methods. The absence
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Figure 1: Wavelet decomposition subbands using a decimated transform with two multiresolution levels.

of such investigations, even within a single class of techniques, makes it very difficult for a practitioner
to select an appropriate denoising scheme from the wealth of techniques that have been proposed in the
literature. Our goal in this paper is to address this drawback in a small way by comparing and contrasting
several of the different denoising methods that are based on the shrinkage of wavelet coefficients.

2.1 Denoising using Wavelet Shrinkage

The problem of denoising data can be stated as follows: given the zero-mean observation data Y; ; as a noisy
realization of the signal Xj ;,

Yi,j:Xi,j+6i,j7 izla"')I)j:17"'7J7 ei,jNN(0702)7 (1)

construct an “optimal” estimate Xi,j of X;; based on Y; ;. In this work, we assume that the {e; ;}s are
independent from the signal and are independent and identically distributed Gaussian (normal) random
variables with mean zero and variance o2. We also use the minimal mean squared error (M SE) to evaluate
the optimality of the estimates. Let Y, X, and e denote the observed data, the noiseless data, and the
error matrices in Eq. (1), respectively. Then, the three main steps of denoising using the wavelet coefficient
shrinkage technique are as follows:

1. Calculate the wavelet coefficient matrix w by applying a wavelet transform W to the data:

w=WY=W X+ We, (2)

2. Modify (i.e. threshold or shrink) the detail coefficients of w to obtain the estimate W of the wavelet
coefficients of X:
w = W, 3)

3. Inverse transform the modified coefficients to obtain the denoised estimate:
X=W1w. (4)

The number N of the wavelet coefficients w in Eq. (2) varies depending on the type of transform used.
We focus on decimated transforms [29], where N = IJ, regardless of the number of multiresolution levels
K, as it requires less memory than the undecimated transform. Fig. 1 displays the subbands of a two-level
(K = 2) decimated decomposition. The coefficients on the first level are grouped into the vertical detail
(LH,), horizontal detail (HL,), diagonal detail (H Hy), and smooth (LL;) subbands. The smooth part is
then similarly decomposed into the four second level subbands. The directions reflect the order in which the
high-pass (H) and low-pass (L) filters of the wavelet transform are applied along the two dimensions of the
original image.



The first step in denoising is to select a wavelet for the forward and inverse transformations W and
W1in Eq. (2) and Eq. (4), respectively. We investigate well-known orthogonal and biorthogonal wavelets
including the Daubechies family (daublets), the least asymmetric wavelet family (symmlets), the coiflet family
(coiflets), and the B-spline and V-spline families [30]. These wavelets differ in their support, symmetry, and
number of vanishing moments. In addition to a wavelet, we also need to select the number of multiresolution
levels and an option for handling values near the edges of the image. We consider several boundary treatment
rules [31], including periodic, symmetric, reflective, constant, and zero-padding.

The remainder of this section explains the details in the shrinkage (sometimes called thresholding) step
in Eq. (3). Let w denote a single detail coefficient and @ its shrunk (thresholded) version. Let A be the
threshold, d)() denote the shrinkage function which determines how the threshold is applied to the data,
and ¢ be an estimate of the standard deviation o of the noise in Eq. (1). Then,

W =0 d(w/s), (5)

or
W= 6A (’LU) ) (6)

depending on whether the threshold A was determined assuming a unit noise scale ¢ = 1, in which case
Eq. (5) applies, or an estimation of the actual noise was built-in into the method, in which Eq. (6) would be
appropriate. Note that the noise estimate, the threshold, and the shrinkage function could depend on either
the multiresolution level or the subband, though we have suppressed this dependence in our notation.

The denoising methods we consider differ in the choices for 6(), A and &, in Eq. (5) and (6). That is, we
can obtain different denoisers by considering different

e shrinkage functions that determine how the threshold is applied (Section 2.2)
e noise estimates (Section 2.3), and
o shrinkage rules to determine the threshold A (Section 2.4).

Since some shrinkage rules depend on the shrinkage functions and the noise estimates, we need to first select
4() and 6 before we determine the .

For one-dimensional data, we can calculate the thresholds either globally, with one threshold for all the
coefficients, or on a level-dependent basis, with K different thresholds for the K different dyadic levels. In two
dimensions, in addition to these two possibilities, we can also calculate thresholds in a subband-dependent
manner, and obtain 3K thresholds for the 3K detail coefficient subbands. While typical publications on
denoising images [10, 6] consider either the level-dependent or the subband-dependent alternative in addition
to the global implementation, we consider all the three different options. Next, we describe the different
ways in which we can select the shrinkage functions, estimate the noise, and select the rules for denoising.
More details can be found in [32], which is available on-line.

2.2 Shrinkage Functions

The shrinkage (thresholding) function determines how the thresholds are applied to the data. Fig. 2 displays
the four thresholding functions we studied, scaled to the interval [—1,1]. The z axis represents detail wavelet
coefficients w in Eq. (2), and the y axis shows the corresponding thresholding function ) (w). The dotted
vertical lines indicate the values of the single threshold A\ for the hard (6§ (w)), soft (65 (w)), and garrote
(65 (w)) functions. The semisoft function 857, (w) requires two thresholds, +A; and =), represented by
the four dotted vertical lines in its graph. If It,) denotes the {0,1} indicator function, corresponding to
{a = False,a = True}, the mathematical expressions for each of the shrinkage functions are

8 (w) = wlfju|>ays (7)
65 (w) = sgn(w)(l] = NI{ wj>xy, (8)
65 (w) = (w =) Ipwsan, (9)



Figure 2: Shrinkage functions.
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2.3 Noise Estimates

Certain thresholds, as described in Section 2.4, are determined assuming a unit noise scale o = 1. Therefore,
in practice, the data must be standardized by an estimate of the noise scale, &, according to Eq. (5) before
applying these thresholds. In some cases, there is prior knowledge about the noise distribution which can
be used to obtain o. However, in many situations, the noise must be estimated from the observed data.
The options for estimating the noise scale include the choice of the functional form of the estimator and
the choice of the detail coefficients to include in the estimation. We consider different estimation functions,
including the sample standard deviation and the more robust median absolute deviation (M AD) suggested
in [1]. We also consider noise estimates that are either global, level-dependent, or subband-dependent.

2.4 Shrinkage Rules

The shrinkage (thresholding) rules determine how the thresholds are calculated. Let A denote a threshold. For
convenience, the possible dependence of A on the multiresolution level, {k,1 < k < K}, or on the subband,
{s5,1 < s < 3K}, is suppressed in the notation. Certain rules calculate the threshold independent of the
shrinkage function, while others obtain different thresholds for different shrinkage functions. In addition,
certain rules assume a unit noise scale, 0 = 1; others do not. We indicate the assumptions of each method
as we describe them in more detail.

e Universal:

The wuniversal rule was proposed in [2] as a global rule for one-dimensional signals. Regardless of the
shrinkage function, for a signal of size N from a standard normal distribution A(0, 1), the threshold
is A = v/2log N. With a noise estimate 4, it is applied according to Eq. (5).

e Minimizing the false discovery rate:



Introduced in [5] for one-dimensional data, the minFDR rule determines the same global threshold for
all shrinkage functions by keeping the expected value of the fraction of coefficients erroneously included
in the reconstruction below a given fraction ¢q. Given the N wavelet coefficients w,,, first it computes
the p-values

pn = 2[1 = ®(|wn|/5)], (11)

where ®() is the cumulative distribution function of the standard normal distribution, and ¢ is an
estimate of the noise standard deviation. Then, it orders the p, values as

Py <pe) < <Py (12)

Starting with n = 1, let m be the largest index n such that
n
Pn) S 5 (13)

The threshold is then obtained as
A=601 (1 - @) (14)

As 6 is already factored in, the threshold is applied according to Eq. (6).

Top:

The top rule for one-dimensional signals [3] is a global method, independent of the shrinkage function.
Given p as the fraction of the largest coefficients to keep, the threshold X is set to be the (1 — p)th
quantile of the empirical distribution of the absolute values of the wavelet coefficients. It is applied to
the coefficients using Eq. (6).

SURE:

For one-dimensional data, thresholds derived by minimizing Stein’s Unbiased Risk Estimate (SURE)
depend on the shrinkage function and on the multiresolution level [1]. The generalization to images
can be achieved in either level- or subband-dependent manner. In the latter case, the threshold on
subband s is

As = arg miny 5 SURE(A, w;), (15)

where w denotes the detail coefficients from subband s, and SURE()\, wy) denotes the corresponding
Stein’s unbiased estimate of the risk corresponding to a specific shrinkage function. For example, the
threshold on subband s to be used with the soft shrinkage function, )\;q , is chosen as the value that
minimizes SURES(\, wy),

AJ = arg min, 5 SURE®(\,w,), (16)
where
N
SURES(\,w,) = N,+ > [min(|w,|,\)]”
n=1
—2[(#of wy) : |wn| < N, (17)

and N is the number of coefficients w,, in wy [1, 32]. The threshold above assumes ¢ = 1. For
data with non-unit variance, the coefficients are standardized by an appropriate ¢ estimate before
calculating the threshold with Eq. (16). The level-dependent implementation is similar, except that
instead of using the coefficients on a subband, one uses the coefficients on a level.

It was shown in [1] that, in the case where the wavelet coefficient decomposition is sparse, a hy-
brid method combining the universal and the SURFE thresholds is preferable over SURE. This hybrid
method, when combined with the soft shrinkage function is referred to as SureShrink in the literature

). I
1 & T (log, N,)3/2
— =) -1) <P (18)
N, T;(( o ) ) VN,



then SureShrink uses the universal threshold, otherwise the SURFE threshold is used for the coefficients
on subband s.

Thresholds for the other shrinkage functions can also be derived. We worked out the details for hard
thresholding, but in reporting the results, we simply call it SURE thresholding with hard shrinkage,
instead of WaveChop, as suggested in [1].

Hypothesis Testing:

Introduced in [4] for one-dimensional signals, the hypTest rule calculates level-dependent thresholds
independent of the thresholding function, based on testing the hypothesis that the wavelet coefficients
at a given level are zero. In our extension to images, we distinguish between the level-dependent and
the subband-dependent implementations.

Following the notation in the description of the SURE rule for the subband-dependent version, and
assuming that the N; wavelet coefficients on subband s are normally distributed, we first find the
largest of the squared wavelet coefficients on the subband, denoted by w?Ns), then compare it to the

critical value 5

&, = {7 [ya-a e} (19)

where « is the pre-determined Type I error probability in the testing and ®() is the cumulative
distribution function of the standard normal density. If

2
w N, o
a7 > e, (20)

where ¢ is an estimate of the standard deviation of the noise, the null hypothesis of zero mean associated
with the largest (in absolute value) coefficient is rejected, and so w(y,) is retained as signal. Next, the
process is iterated with the square of the second largest (in absolute value) wavelet coefficient w(zNF 1)-

If wQNS_l) /62 > ¢y, _1, the procedure continues until at some point the mth largest (in absolute value)
coefficient satisfies

2
w
(;’;’ <o (21)
The threshold at subband s is then set as
As = |w(m)|a (22)

and is applied according to Eq. (6).
BayesShrink:

The BayesShrink rule of [6] uses a Bayesian mathematical framework for images to derive subband-
dependent thresholds that are nearly optimal for soft thresholding. The formula for the threshold on

a given subband s is:

6.2

As = —, 2
- (23)

where 62 is the estimated noise variance, and 6% is the estimated signal variance on the subband

considered. The noise variance is estimated as the median absolute deviation of the diagonal detail
coefficients on level 1 (i.e. subband HH;). The estimate of the signal standard deviation is

6x = y/max(62 —62,0), (24)

1 &
6% = w? (25)
=1

where

F n

8
n



is an estimate of the variance of the observations, with N being the number of the wavelet coefficients
wy, on the subband under consideration. In case 62 > 62, the threshold is set to A\; = max(|wy|), and
all coefficients from the subband are set to zero. These thresholds are applied according to Eq. (6).

This method has been proposed for use with soft thresholding. We use the thresholds calculated via
this procedure with other thresholding functions as well, but, in compliance with [6], we reserve the
term BayesShrink for denoising with the soft shrinkage function.

It is clear from the description of the various shrinkage rules, that some of them require input parameters.
We next describe our experimental results, including the empirical determination of the values of these
parameters.

3 Experimental Results

We compared the various denoising methods described in Section 2 on several test images widely used in
the image processing community. Here, we report the results only for the Lena image. Complete results for
other test images can be found in [32]. Our experimental approach was as follows. First, we obtained the
512 x 512 pixel, noiseless, grayscale originals from http://www.image.cityu.edu.hk/imagedb/. We corrupted
these images by adding Gaussian noise to the images according to Eq. (1), using ¢ = 10, 20, and 30. Fig. 3 (a)
shows the original Lena image and Fig. 3 (b) shows the image with additive Gaussian noise of o = 20. Next,
we determined the parameters for the shrinkage rules as described in Section 3.1. Using these parameters, we
applied the wavelet denoising methods, each in a global, level-dependent, and subband-dependent manner.
We evaluated the quality of the denoising using the mean squared error (M SE) and the signal-to-noise-ratio
(SNR) defined below. For a given estimate X (i, j) of X(i,j), the MSE is

MSE = 1537 S (X(0.d) - X(0.)" (26)

the corresponding normalized M SFE is

S YT (X 5) - X, 0))?

MSE, = , (27)

and the SN R on dB scale [19] is

SNR = (28)

3.1 Selection of Parameters

As described in [32], we determined the “optimal” parameters for the minFDR, top, and hyp Test denoising
methods empirically, using the 512 x 512 pixel grayscale Lena test image with additive Gaussian noise with
o = 10, the symmlet8 wavelet, four multiresolution levels and periodic boundary treatment. We chose the
symmlet8 wavelet as it is relatively symmetric, and has a reasonably compact support.

For the minFDR rule, we found the optimal parameters to be ¢ = 0.2 for the global implementation, and
q = 0.3 for the level and the subband-dependent implementations. The global implementation was superior
to the level-dependent one, which, in turn, was superior to the subband-dependent version.

For the top procedure, we determined the best parameter as p = 0.3 for the global implementation, and
as p; = .15, po = .4, p3 = .8, and py = .95 on multiresolution levels one through four, respectively, for the
level-dependent and the subband-dependent cases. The level-dependent method was the best, followed by
the subband-dependent, followed by the global implementation. For the top rule with the semisoft shrinkage
function, we calculated the thresholds by using two different p parameters. The optimal parameter pair for
the global implementation was {p; = 0.1, p» = 0.01}. We obtained the best subband and level-dependent

results with {pgl) = .15,p§1) = .1},{p§2) = .3,pg2) = .1},{p§3) = .6,p§3) = .2},{p§4) = .7,pg4) = .3},



where the superscripts indicate the multiresolution levels. The global implementation was the best, the
subband-dependent was second, and the level-dependent was third.

For the hypTest rule, in accordance with [33], we found that an unusually high value, a = 0.9, was the
optimal. The subband-dependent implementation outperformed the level-dependent version, which outper-
formed the global method.

For the methods that required an estimate of o, we used the M AD of the detail coefficients on the H H;
subband [1], as it was the most robust of the alternatives we tried. A typical such estimate in the case when
o =101is 6 = 10.52.

3.2 Comparison of Wavelet-based Techniques

In Table 1, we present the results of denoising for the Lena image. The three main columns report the MSE
and SN R values corresponding to the three different noise levels. The first row reports the MSE and SNR
values for the noisy images, enabling evaluation of the denoised results. The thresholding rules are prefixed
with either S_ or P_ to indicate whether the thresholds were calculated globally (i.e. Single threshold), or
dependent on the level or subband (i.e. Pyramid of thresholds). For all methods, we considered both level-
and subband-dependent implementations, but report only the better of the two approaches for each method.
The boldfaced entry in each column indicates the best method for the corresponding noise level. Fig. 3
displays a few examples of the denoised results.

It is clear from Table 1, that there is a wide range of variation in the quality of the denoised images.
For example, for the ¢ = 20 image, although all methods decrease the M SE = 399.50 of the noisy image,
the denoised M SFE values range from the worst of 351.63 to the best of 61.59. Choosing the right method
therefore has a large effect on the results.

We next summarize our observations based on the experimental results reported here, and in the more
detailed study [32]. Except for the different quantities involved, the main conclusions reached for the Lena
image are valid for the other images considered in the detailed study. In the following, recall that SureShrink
refers to the subband-dependent P_SURE thresholding with soft shrinkage and BayesShrink refers to the
subband-dependent P_Bayes method with soft shrinkage.

¢ Influence of Shrinkage Function:

As the values in Table 1 indicate, in most cases, soft shrinkage was superior to garrote shrinkage, which,
in turn, was superior to hard shrinkage. An important exception occurred with the universalrule, where
both the hard and garrote functions gave better estimates than the soft function, regardless of the noise
level. In the case of the top rule, subband-dependent semisoft shrinkage was always inferior to the
corresponding soft shrinkage results, but the global semisoft implementation led to values comparable
to those obtained with the global soft thresholding for ¢ = 10 and ¢ = 20.

We conclude that the choice of the shrinkage function strongly influences the results, and that the soft
shrinkage function is preferred to either the garrote, hard, or semisoft functions. We note that, for
statistical reasons, the authors in [6] only consider soft shrinkage.

e Influence of Shrinkage Rule:

The range of values in Table 1 indicates that the shrinkage rule strongly affects the outcome of the
denoising operation. In most cases, the pyramidal implementations of the rules resulted in better
estimates than the global implementations, regardless of the noise level. For the minFDR method, the
two implementations led to very similar results. For the hypTest method, the results depended on the
noise level: the pyramidal version was superior for ¢ = 10, but it was inferior for o = 20 and o = 30.

Despite the global implementation proposed in [2], we found that subband-dependent universal thresh-
olding outperformed its global version, regardless of the shrinkage function and the noise level.

In all cases, we found that SureShrink was the best method. BayesShrink was the second best in all
cases but one (¢ = 10), where the level-dependent top method was slightly better. Since we did not
observe this consistently across different images and noise levels, we exclude the top rule from the list
of best denoisers. However, we believe that more data-adaptive tuning is needed to choose the optimal
parameter for the top method than what we proposed in Section 3.1. We also observe that in most



of the examples considered in [6], the BayesShrink procedure proposed by the authors outperforms
SureShrink.

e Influence of Noise:

Our main conclusion that SureShrink and BayesShrink were the best denoisers overall is not sensitive
to the amount of noise in the images. We do, however, stress that it is important to use a robust
estimator of the noise, such as the M AD described in Section 2.3.

o Influence of Wavelets:

In our experiments with denoising, we found that the choice of wavelet, the number of multi-resolution
levels, and the boundary treatment rule had little effect on the results. This observation agrees with
[6]. The results in Table 1 were obtained using the symmlet12 wavelet with 12 coefficients [30] with
K = 3 multiresolution levels and periodic boundary treatment. We performed the same analyses using
different wavelets, different numbers of levels, and different boundary extensions [32]. The ordering of
the methods, as measured by their M SE values, remained the same for the alternatives we tried.

In our study, the biorthogonal wavelets fared worse, as measured by the M SE, than the orthogonal
symmlets. Because of their symmetry, the biorthogonal wavelets are claimed to lead to fewer visual
artifacts in reconstructed images [10]. In our experiments, however, images denoised with the nearly-
symmetric orthogonal symmlets are visually comparable to those obtained with biorthogonal wavelets.

e VisuShrink Compared to SureShrink:

The authors in [2] define the term VisuShrink to refer to global soft shrinkage with the universal
threshold for one-dimensional signals, because it leads to visually pleasing results. However, for two-
dimensional images, just as the authors in [10], we found that SureShrink yielded much better results
than the VisuShrink procedure, both in terms of M SE and visual quality. In fact, we found that
even the global hard thresholding with the wniversal threshold outperformed VisuShrink. Though
far from optimal, this global hard thresholding with the wuniversal threshold is sometimes used as a
benchmark in measuring denoising performance. Fig. 3 (d) displays the result of this method on Lena.
In comparison, SureShrink in panel (c) results in much superior denoising.

In conclusion, we found that in our experiments, SureShrink and BayesShrink were the best denoisers
among the ones we studied. They yielded similar results and consistently outperformed the other methods
in all but one case (the Lena image with o = 10, where the level-dependent top method with soft shrinkage
resulted in a slightly smaller M SE than BayesShrink). In most cases, SureShrink had slightly smaller M SE
values than BayesShrink, but the differences were small enough to be just random fluctuations, and are in
agreement with [6]. However, some users might prefer the BayesShrink method because of its simplicity.

We realize that, for methods with input parameters, we could have fine-tuned the parameters to the
image, and reduced the MSE further, making the methods more competitive. However, this need for fine-
tuning could be considered a drawback of these methods, especially since the two top contenders, SureShrink
and BayesShrink achieved nearly optimal performance without any tuning of parameters.

4 Comparison with Spatial Filters

While wavelet-based denoising techniques are certainly a powerful tool for image restoration, our study would
be incomplete without a comparison with the more traditional approaches based on the use of spatial filters
[7, 34]. In this section, we compare the effectiveness of denoising using several linear and non-linear filters
applied either by themselves or in combination with other spatial filters. Our choice of filters is listed below,
where the filter size is indicated in parenthesis:

e Mean filters (3 x 3,5 x 5)
e Gaussian filters (3 x 3,5 x 5)

10



e Scaled unsharp masking filters (3 x 3,5 x 5). Given the real number 3, these filters calculate (1.0 +
B)original image — (3)mean _filtered_image. In our experiments, 3 = —0.8 gave relatively good results.

e Alpha-trimmed mean filters (3 x 3,5 x 5) with a trim size of either 1 or 2. The trim size is the number
of smallest and largest pixels that are excluded in the calculation of the mean.

e Median filters (3 x 3,5 x 5)

e Mid-point filters (3 x 3,5 x 5). The value calculated is the average of the minimum and maximum
within the filter mask.

e Minimum mean squared error filters (3 x 3,5 x 5)

For filters requiring an estimate of the noise variance, we used the following algorithm. First, we sub-
tracted a (3 x 3) mean-filtered image from the original. Next, we calculated the standard deviation, sd, of
the resulting image, and dropped all the pixels whose absolute values were larger than sd. Finally, we used
the standard deviation of the remaining pixels as the estimate of the standard deviation ¢ of the noise in
the image. For the Lena image with ¢ = 10, a typical estimate obtained with this method is 6 = 10.95.

The spatial filter-based findings for the Lena image are given in Table 2, the bold entries indicating the
best results for the different noise levels. We used periodic boundary treatment to handle values near the
edges of the image. Examples of the denoised images are given in Fig. 3.

The authors in [6] show empirically that the results of the best possible linear filtering, using the Wiener
filter, are inferior to the results obtained with SureShrink. Comparing the M SE values in Table 2 to
the corresponding values in Table 1, however, indicates that combinations of spatial filters can be very
competitive with wavelet-based denoising techniques. For ¢ = 20 and o = 30, the best spatial-filtered
images, using the 5 x 5 minimum M SE filter followed by a 3 x 3 mean filter, have smaller errors than the
best wavelet-denoised images.

Spatial filters are very simple to implement and are computationally faster than wavelet-based methods as
they require far less computation in many cases. However, a comparison of the images indicates that spatial
filters often result in grainier images than the ones obtained from wavelet techniques. Unless special care is
taken near the edges, they also tend to smooth the edges in the image. On the other hand, wavelet-based
approaches sometime create noticeable artifacts that can substantially degrade the image.

5 Summary

In this paper, we evaluated several denoising methods on test images corrupted with white Gaussian noise.
We considered an extensive set of techniques based on statistical thresholding of wavelet coefficients as well
as the more traditional approaches using spatial filters.

Based on our experiments, we conclude that SureShrink and BayesShrink are the best wavelet-based
denoising methods for the types of images we considered, among the methods we considered. None of the
other wavelet-based procedures that we examined achieved lower error rates, as measured by the M SE, than
these two techniques. When we consider simplicity of implementation along with the denoising performance,
we found BayesShrink to be the best procedure.

For completeness, we also compared the wavelet-based denoisers with various spatial filter-based methods.
Our results indicate that on an case-by-case basis, it is often possible to find a denoiser based on combinations
of spatial filters that is superior to the best wavelet-based denoiser. In most, but not all, of those cases, the
optimal method is given by the 5 x 5 Min-M SFE filter followed by the 3 x 3 Gaussian filter.

As we have mentioned, there are several alternative methods for denoising image and other data that
have been proposed in the last few years. We plan to complement our study of wavelet-based shrinkage
techniques by exploring some of these newer techniques as well.
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Figure 3: Denoising results for the Lena image. (a) Original image. (b) Noisy image, o = 20, M SE = 399.50.
(¢) SureShrink, MSE = 61.59. (d) Global universal rule with hard thresholding, M SE = 103.95. (e)
Minimum mean squared error (5 x 5) followed by Gaussian (3 x 3) filter, M SE = 56.80. (f) Minimum mean
squared error (5 x 5) followed by mean (3 x 3) filter, M SE = 64.80.
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Table 1: Wavelet-based results for the Lena image, the symmlet12 wavelet, three multiresolution levels and
periodic boundary treatment.

oc=10 g=20 g=30

Rule MSE | SNR | MSE | SNR || MSE | SNR

| Noisy image 99.53 | 13.62 || 399.50 | 7.58 894.66 | 4.08
S_Universal || 86.57 | 14.22 || 136.52 | 12.25 || 169.40 | 11.31

S_MinFDR 33.26 | 18.38 81.13 | 14.51 || 143.89 | 12.02

S_Top 33.35 | 18.37 91.46 | 13.99 || 177.24 | 11.11

S_HypTest 33.50 | 18.35 || 103.12 | 13.47 || 261.45 | 9.42

S_SURE 33.70 | 18.32 74.91 14.85 || 113.01 | 13.07

Soft S_Bayes 39.09 | 17.68 75.77 | 14.80 || 115.18 | 12.98
P_Universal || 76.45 | 14.76 || 123.54 | 12.68 || 156.90 | 11.64

P_MinFDR 33.59 | 18.34 81.80 | 14.47 || 143.74 | 12.02

P_Top 29.92 | 18.84 75.06 | 14.84 || 141.46 | 12.09

P_HypTest 31.83 | 18.57 || 112.41 | 13.09 || 292.43 | 8.94
P_SURE 29.23 | 18.94 | 61.59 | 15.70 || 91.34 | 13.99

P_Bayes 30.26 | 18.79 63.33 | 15.58 92.74 | 13.93

S_Universal || 55.98 | 16.12 || 103.95 | 13.43 || 142.44 | 12.06

S_MinFDR 75.40 | 14.83 || 282.55 | 9.09 622.14 | 5.66

S_Top 80.20 | 14.56 || 317.27 | 8.58 709.56 | 5.09

S_HypTest 72.39 | 15.00 || 339.18 | 9.29 810.56 | 4.51

S_SURE 70.23 | 15.13 || 257.76 | 9.49 562.66 | 6.10

Hard S_Bayes 92.38 | 13.94 || 240.58 | 9.79 255.64 | 9.52
P_Universal || 49.55 | 16.65 93.58 | 13.89 || 128.61 | 12.51

P_MinFDR 75.11 | 14.84 || 280.66 | 9.12 618.50 | 5.69

P_Top 68.56 | 15.24 | 263.28 | 9.39 584.97 | 5.93

P_HypTest 76.71 | 14.75 || 351.63 | 8.14 829.56 | 4.41

P_SURE 70.24 | 15.13 || 257.81 | 9.49 561.53 | 6.10

P_Bayes 48.26 | 16.76 || 101.29 | 13.54 || 152.54 | 11.76

S_Universal || 69.81 | 15.16 || 121.28 | 12.76 | 158.12 | 11.61

S_MinFDR 37.70 | 17.83 || 115.52 | 12.97 || 234.12 | 9.90

S_Top 41.09 | 1746 || 143.96 | 12.02 || 311.00 | 8.67

S_HypTest 36.12 | 18.02 || 169.95 | 11.30 || 463.92 | 6.93

Garrote S_Bayes 58.01 | 15.96 93.61 13.89 | 112.14 | 13.10
P_Universal || 60.98 | 15.75 || 107.77 | 13.27 || 143.52 | 12.03

P_MinFDR 37.60 | 17.85 || 114.75 | 13.00 || 231.91 | 9.95

P_Top 34.79 | 18.18 || 111.59 | 13.12 || 234.01 | 9.91

P_HypTest 38.36 | 17.76 || 190.23 | 10.81 || 511.85 | 6.51

P_Bayes 34.37 | 18.24 71.35 | 15.06 || 103.66 | 13.44

SemiSoft S_Top 33.09 | 18.40 91.46 | 13.99 || 200.92 | 10.57
P_Top 56.95 | 16.04 || 214.62 | 10.28 || 475.91 | 6.82
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Table 2: Filter-based results for the Lena image with periodic boundary treatment.

o =10 o=20 o =30
Image MSE | SNR | MSE | SNR || MSE | SNR
| Noisy image 99.53 | 13.62 | 399.50 | 7.58 | 894.66 | 4.08
Mean (3) 42.67 | 17.30 || 76.34 | 14.77 || 130.46 | 12.44
Mean (5) 82.07 | 14.46 93.91 | 13.87 | 113.59 | 13.05
Gaussian (3) 32.95 | 18.42 || 95.25 | 13.81 || 196.92 | 10.66
Gaussian (5) 45.58 | 17.01 67.09 | 15.33 || 101.58 | 13.53
Scaled Unsharp Masking (3) || 34.84 | 18.18 || 79.13 | 14.62 | 150.75 | 11.82
Scaled Unsharp Masking (5) || 57.79 | 15.98 || 81.32 | 14.50 || 119.63 | 12.82
Alpha Trimmed Mean (3,1) 39.12 | 17.68 76.11 | 14.78 || 134.52 | 12.31
Alpha Trimmed Mean (5,2) 74.20 | 14.89 || 88.48 | 14.13 | 110.41 | 13.17
Median (3) 40.16 | 17.56 94.50 | 13.84 || 178.17 | 11.09
Median (5) 59.31 15.87 84.41 14.33 || 120.39 | 12.79
Mid-point (3) 78.76 | 14.64 || 131.29 | 12.42 | 222.31 | 10.13
Mid-point (5) 178.00 | 11.09 | 196.15 | 10.67 || 249.49 | 9.63
Min-MSE (3) 70.67 | 15.11 || 192.53 | 10.75 || 389.93 | 7.69
Min-MSE (5) 39.35 | 17.65 91.97 | 13.96 || 163.36 | 11.47
S-Unsharp (3), Mean (3) 50.50 | 16.57 || 69.00 | 15.21 || 98.65 | 13.66
Mean (3), Mean (3) 54.07 | 16.27 || 7067 | 1511 | 97.35 | 13.72
Min-MSE (5), Mean (3) 4495 | 17.07 || 6480 | 1548 | 89.44 | 14.08
Min-MSE (5), Gaussian (3) || 31.78 | 18.58 || 56.80 | 16.06 | 88.52 | 14.13
S-Unsharp (3), Gaussian (3) || 41.56 | 17.41 || 66.99 | 15.34 | 107.81 | 13.27
Gaussian (3), Gaussian (3) 37.09 | 1791 || 68.64 | 15.23 || 119.50 | 12.83
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