
PSUADE Short Manual
(Version 1.6)

Charles Tong

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA 94551-0808

September, 2013

1



1 Introduction

PSUADE (Problem Solving environment for Uncertainty Analysis and Design Exploration)
is a software package for various uncertainty quantification (UQ) activities such as uncer-
tainty assessment (UA), sensitivity analysis (SA), parameter study, numerical optimization,
etc. It consists of three major components: a suite of sampling methods, a job execution
environment, and a collection of analysis tools. This document describes how to set up and
use these UQ tools. The mathematics of the sampling and analysis methods can be found
in the theory manual.

1.1 A Quick Start

Follow the instruction in this section and you should be able to build and run PSUADE (on a
simple example) in less than 5 minutes (depending on the speed of your hardware) on a Linux-
based system (Please consult PSUADE developers for a Windows version of the PSUADE
executable and the associated installation guide). For building PSUADE executables on
other platforms (MAC, Windows), refer to detailed instruction in a later section.

1. gzip -d PSUADE v1.6.x.tar.gz

2. untar xvf PSUADE v1.6.x.tar

3. cd PSUADE v1.6.x

4. For adding Gaussian process capability, consult the developers on how to install it first.

5. Set the ‘FC’ environment variable to your preferred Fortan compiler, if you have one
(cmake will select one automatically if not set).

6. mkdir build

7. cd build

8. ccmake .. (Select packages by typing ’c’ and then using the arrow keys to move up and
down the list and type ’enter’ to select. When you are finished with package selection,
type ’c’ (may be twice) and then ’g’ to save and exit. If you would like to install the
executable somewhere else, set the install directory)

9. make (to create the ‘psuade’ executable and libraries)

10. To verify correct installation, do: cd Examples/Bungee

11. cc -o simulator simulator.c -lm

12. psuade psuade.in (this is to verify that the execuable runs correctly).

2



What you have just done are to build the PSUADE executable and perform uncertainty
analysis on a simple example. At the end PSUADE prints out the summary of statistics and
all input and output data have been stored in the psuadeData file. Later on in this document
more details about how to create PSUADE input files (psuade.in in this case) and how to
create Matlab/Scilab graphics will be given.

1.2 PSUADE Capabilities

PSUADE supports non-intrusive uncertainty quantification through sampling (it does have
a few features to support semi-intrusive methods). Some of the available sampling methods
are:

• Monte Carlo and quasi-Monte Carlo

• Latin hypercube and orthogonal arrays

• Morris one-at-a-time, its variants, and other screening designs

• Central composite, factorial and fractional factorial

• Fourier Amplitude Sampling Test (FAST)

• Other space-filling designs

• Support several popular input probability density functions

These sample points are then evaluated by running the user simulation codes. PSUADE
provides a mechanism to accomplish this via a runtime environment which performs the
following tasks when invoked:

• Write the values of a sample point to a parameter file.

• Call the user code (provided by users in the PSUADE input file) with the parameter
file as its first argument.

• The user code is expected to read in the parameter values from the parameter file, run
the application, produce some output quantities and write them to an output file which
is specified as the second argument to the user code. Thus, the user code can be a
simple program such as simulator.c in some of our examples, or a complex super-script
performing preprocessing, actual model evaluation and postprocessing.

• PSUADE detects the presence of the output file and reads in the outputs.

• PSUADE moves on to the next sample point and continues until all sample points have
been processed (PSUADE can process multiple sample points at the same time using
asynchronous mode).

3



• Finally, PSUADE reads in all sample data and analyzes them based on user requests
given in the PSUADE input file (‘ANALYSYS’ section).

PSUADE supports many types of analysis such as

• Response surface analysis (MARS, polynomial regression, Kriging, etc.)

• Parameter screening (several such methods)

• Hypothesis testing

• Correlation analysis

• Main effect (first order sensitivity) analysis

• Interaction (second order sensitivity) analysis without

• Group and total sensitivity analysis

• Bayesian calibration

• Deterministric numerical optimization

• Mixed aleatory-epistemic uncertainty analysis

• Graphical analysis (e.g. scatter plots via Matlab/Scilab)

There are other advanced features in PSUADE which are under active research and are
not described in this document.

2 Installation

In this section we describe installation procedures for three different operating systems.

2.1 Linux

As described in the last section, installation of PSUADE on Linux-based systems is straight-
forward. After ‘unzipping’ and ‘untarring’ the downloaded file, go into the PSUADE direc-
tory and do the following:

[Linux] mkdir build

[Linux] cd build

[Linux] (optional) setenv FC <your preferred Fortan compiler>

[Linux] ccmake ..

hit ‘c’

Select BUILD_SHARED, MARS, BOBYQA, and METIS (Note: Consult PSUADE

developers for instructions on how to install other packages).

4



If you need to change the compiler, hit ‘t’ and find the

CMAKE_C_COMPILER and CXX fields and fix them.

hit ‘c’

hit ‘c’ again until you are able to hit ‘g’.

hit ‘g’ to generate an exit

* If you do not have ccmake, do :

* cmake ..

* and then open the CMakeCache.txt file and turn on the packages

* MARS, BOBYQA, and METIS.

[Linux] make

At the end of this installation, the PSUADE executable will have been created in the build/bin
directory. Note that since ‘BUILD SHARED’ has been selected, the executable will use the
shared libraries in the build/lib directory, so it is important to keep the libraries at the same
directory and be accessible by users. If it is desirable to have the executable and libraries
accessible to many users, you can set the ‘CMAKE INSTALL PREFIX’ field in ‘ccmake’
and then issue ‘make install’ instead.

2.2 MacOSX

Building PSUADE executable from source files on MacOS requires ‘cmake’, ‘macports’, ‘gcc’,
‘g++’, and ‘gfortran’ with version 4.4 or higher. A session to check the compiler versions is
given below:

2.2.1 Step 1: Check Compilers

This step consists of checking to make sure you have ‘gcc’ installed from ‘macports’. A
session to check the compiler versions is given below (which shows that all except the ‘cc’
compiler are from macports):

[macos] cc --version

Apple LLVM version 4.2 (clang-425.0.27) (based on LLVM 3.2svn)

Target: x86_64-apple-darwin12.4.0

Thread model: posix

[macos] gcc --version

gcc (MacPorts gcc45 4.5.4_6) 4.5.4

Copyright (C) 2010 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

[macos] c++ --version

c++ (MacPorts gcc45 4.5.4_6) 4.5.4

5



Copyright (C) 2010 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

[macos] gfortran --version

GNU Fortran (MacPorts gcc45 4.5.4_6) 4.5.4

Copyright (C) 2010 Free Software Foundation, Inc.

2.2.2 Step 2: Run Cmake

[Linux] mkdir build

[Linux] cd build

[Linux] ccmake ..

hit ‘c’

Select BUILD_SHARED, BOBYQA, and METIS (Note: Consult PSUADE

developers for instructions on how to install other packages).

hit ‘c’

hit ‘t’ to go to advanced options.

I can see this my case cmake has picked up the wrong cc:

CMAKE_C_COMPILER /usr/bin/cc

I need to change it to:

CMAKE_C_COMPILER /opt/local/bin/gcc

Aside from this it seems OK, so I hit ‘c’ until I can hit ‘g’, then

hit ‘g’ to generate and exit.

2.2.3 Step 3: Build Executable

To build the PSUADE executable, do the following:

[Linux] make

At the end of this installation, the PSUADE executable will have been created in the
build/bin directory.

2.3 Windows

Building PSUADE executable from source files on Windows requires ‘cmake’, and ‘mingw’
(preferably including ‘gfortran’). If you desire to build an installable package, you will need
NSIS.

2.3.1 Step 1: Check Compilers

First make sure you have ‘cmake’ version 2.8 or higher installed on your system. Then,

6



Start the ‘cmake-gui’ program.

Select your PSUADE source tree, and where you want it to be built.

Click ‘configure’.

Select MingGW make files.

Select BUILD_SHARED, BOBYQA, and METIS.

Click ‘Generate’.

2.3.2 Step 2: Build Executable

Open a command line window, either ‘powershell’ or ‘cmd’, then do:

cd builddir

c:\mingw\bin\mingw-make.exe (It should build for a while)

2.3.3 Step 3: Install

You can now install PSUADE by running

c:\mingw\bin\mingw-make.exe install

Now continue to read this manual and follow the instructions to get a simple application
running.

3 Using PSUADE

PSUADE operates in one of the two modes: batch and command line modes.

3.1 Batch Mode

In batch mode, PSUADE interacts with users via a few files. At the first level, an PSUADE
input file (called psuade.in here) has to be created and run via

[Linux] psuade psuade.in

This psuade.in file should begin with the keyword PSUADE as the first line and should
have 5 subsections following by the last line having the keyword END. The formats of the
subsections are described next (for an example, read the psuade.in file in the Examples/Bungee
directory).

7



3.1.1 The Input Section

The INPUT section allows the users to specify the number of inputs, their names, their range,
and their distributions. Specifically, it is enclosed in an INPUT block. An example is given
as follows:

INPUT

dimension = 4

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

variable 3 X3 = 0.0 1.0

variable 4 X4 = 0.0 1.0

PDF 1 T 0.0 1.0

PDF 2 N 0.0 1.0

PDF 3 L 0.0 1.0

END

In this example the number of inputs is 4, their names are X1, X2, X3, and X4 (notice
that the variable indices are 1-based), and their lower and upper bounds are all 0 and
1, respectively. The probability density distributions (PDF) for the inputs are optional
(the default is uniform U). If the PDF is either normal (N) or lognormal (L), the mean
and standard deviation also have to be provided (joint PDF for normal and lognormal
distributions are also supported). If the PDF is triangular (T), the mean and width are
to be provided. Other available distributions are beta, exponential, gamma, Weibull, and
user-provided samples.

3.1.2 The Output Section

The OUTPUT section is similar to but simpler than the INPUT section. Here only the output
dimension and the names of the output variables are needed. For example, given as follows:

OUTPUT

dimension = 3

variable 1 Y1

variable 2 Y2

variable 3 Y3

END

3.1.3 The Method Section

The METHOD section specifies the selected sampling method and additional information on
sampling. An example is given below.

METHOD

sampling = LH

8



num_samples = 600

num_replications = 60

num_refinements = 0

randomize

END

In this example, the sampling method is Latin hypercube, the sample size has been set
to 600, and no refinement is used (refinement is an advanced feature for adaptive sampling
and is described in detail in the theory manual). When the number of replications is larger
than 1, it is called replicated Latin hypercube which is useful for global sensitivity analysis.
In this example, with 60 replications, the number of levels for the Latin hypercube samples
is 600/60 = 10. Also, the randomize flag has been turned on to tell the sampling method
that random perturbation should be added to the sample.

Some of the other sampling methods available are (refer to the theory manual for more
details):

MC - Monte Carlo

LPTAU - a quasi-random sequence

FACT - full factorial design

MOAT - Morris one-at-a-time screening

LH - Latin hypercube

OA - Orthogonal Array

OALH - Orthogonal Array-based Latin hypercube

FAST - Fourier Amplitude Sampling Test (FAST)

BBD - Box Behnken design

PBD - Plackett Burman design

FF4 - Fractional factorial of resolution IV

FF5 - Fractional factorial of resolution V

FF5 - Fractional factorial of resolution V

CCI4 - Central composite (circumscribed) of resolution V

CCI5 - Central composite (circumscribed) of resolution V

METIS - full space-filling based on domain decomposition

SPARSEGRID - a sparse grid method

3.1.4 The Application Section

The APPLICATION section sets up the user-provided simulation executable and other runtime
parameters. An example is given below.

APPLICATION

driver = ./testmain

opt_driver = NONE

max_parallel_jobs = 1

max_job_wait_time = 1000000

END

9



Here driver points to the executable to be used for function evaluations. opt driver points
to the executable for numerical optimization. Again, the user code can just be a simple
program or a complex super-script performing postprocessing, actual model evaluation and
postprocessing. The user code can also be a PSUADE data file itself, as will be shown later.

After the creation of a sample based on information from the INPUT, OUTPUT and
METHOD sections, PSUADE proceeds with launching the jobs. If the max parallel jobs is
set to 1, the sequential mode is turned on. In this mode, PSUADE schedules the evaluation
of the user-provided function by sequencing from sample point 1 onward. To run job i,
PSUADE first creates an input parameter file (called psuadeApps.in.i). This file contains in
its first line the input dimension, followed by the values of the input parameters for the i-th
sample point. PSUADE then calls driver with two parameters (for example, for the sample
point 9)

./testmain psuadeApps.in.9 psuadeApps.out.9

The driver program is expected to take the input parameters from the psuadeApps.in.9
file, do whatever is needed, and write the outputs to the psuadeApps.out.9 file. An example
of the content of an output file (3 output variables) is:

3.12

15.9

100.4

If max parallel jobs is set to a number larger than 1, then the asynchronous job scheduling
mode is turned on. In this mode, multiple psuadeApps.in.i files are created simultaneously,
and driver is called max parallel jobs times simultaneously. max job wait time is used for fault
detection and recovery.

Some of the other options in this section are:

launch_only - launch all jobs without waiting for results

limited_launch_only - same as launch_only but only launch max_parallel_jobs jobs

gen_inputfile_only - generate all sample files only (no code runs)

3.1.5 The Analysis Section

The ANALYSIS section specifies what type of analysis is desired and the parameters used
in the analysis. An example is given below (which computes the different moments of the
sample on output number 1).

ANALYSIS

analyzer method = Moment

analyzer threshold = 5.000000e-04

analyzer output_id = 1

analyzer rstype = MARS

#optimization method = bobyqa

10



#optimization num_local_minima = 1

#optimization use_response_surface

#optimization num_fmin = 1

#optimization fmin = 0

END

Some of the available analysis methods are:

MainEffect - sensitivity indices

TwoParamEffect - second order sensitivity indices

RSFA - response surface analysis (curve fitting)

MOAT - Morris one-at-a-time screening analysis

Correlation - correlation analysis

Integration - numerical integration using the data points

FAST - Fourier Amplitude Sampling Test analysis

FF - fractional factorial main and interaction analyses

PCA - principal component analysis

RSMSobol1 - response surface-based first order sensitivity analysis

RSMSobol2 - response surface-based first second sensitivity analysis

RSMSobolG - response surface-based group main effect analysis

RSMSobolTSI - response surface-based total sensitivity analysis

When response surfaces are used together with the selected analysis method, the response
surface type has to be specified. The available response surface types are (some of these are
not included in the release):

MARS - multi-variate adaptive regression splines (by Friedman)

MARSBag - MARS with bootstrapped aggregation

linear - linear regression

quadratic - second order polynomial

cubic - third order polynomial

quartic - fourth order polynomial

user_regression - user-specified polynomial

GP1 - Gaussian process (Tpros)

SVM - support vector machine

Kriging - an universal Kriging method

SOT - a sum-of-trees method

sparse_grid_regression

In addition, for performing numerical optimization, a few related options have to be
specified (the commented lines from the above example). In the example, the selected
optimization method is bobyqa by Michael Powell. Other available optimization methods
are crude (a simple examination of all sample outputs and select the minimum one), minpack
(an external optimization package), cobyla (an external optimization package), and sm/mm

11



(space-mapping and manifold-mapping methods by David E. Ciaurri). num local minima tells
PSUADE how many minima to identify (from the initial sample) for multi-start searches. If
user response surface is used, the sample data will first be used to create a response surface
before searching for the minima. num fmin tells PSUADE the number of optimal points to
be expected so that PSUADE can decide to stop when this has been achieved. Also, users
can also tell PSUADE what the optimal value to look for via fmin.

3.2 Command Line Mode

PSUADE allows users to interactively perform some of the analyses. Interactive mode is
activated by just calling

[Linux] psuade

without any argument. Some of the available commands in the command line mode are (most
of the commands can be found by the help command):

load <filename> (load a data file, e.g. psuadeData)

splot (generate scatter plot in matlab)

me (main effect study + matlab plot)

rs2 (2-input response surface in Matlab)

rs3 (3-input response surface in Matlab)

rs3m (3-input response surface in Matlab (movie)

rsi2 (2-input response surface intersections in Matlab)

rsi3 (3-input response surface intersections in Matlab)

rscheck (Check quality of response surface with MARS)

quit

help

For example, after you have completed a set of runs, a PSUADE data file will be created
(say, the file name is psData). To create scatter plots for the data in the interactive mode,
do:

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

psuade> splot

matlabsp.m is now available for scatter plots.

psuade> quit

[Linux]

You can now use Matlab to display the scatter plot. You can also generate Scilab files by
toggle the ‘scilab’ command.

12



4 Examples

PSUADE provides many tools for answering many questions with uncertainty quantification.
For example, given a computational model simulating some physical processes,

1. How to assess the impact of parameter uncertainties on the variabilities of some output
of interest? (uncertainty analysis)

2. How do available experimental data alter the outcome of an uncertainty analysis?
(conditional analysis)

3. How to identify a small subset of parameters accounting for most of the output vari-
abilities ? (parameter screening)

4. How to quantify the impact of a particular subset of parameters on the output uncer-
tainties ? (global sensitivity analysis)

5. How to construct a relationship between some input parameters to the model and the
output of interest? (response surface modeling)

6. How to find the parameter values that best fit the available experimental data ? (cal-
ibration, parameter estimation)

7. How to search for the parameter values that give the best model performance? (opti-
mization)

8. How to process, manipulate and visualize the uncertainty data?

9. How to formulate and perform hypothesis testing?

In the following we provide a few examples to show in more details how to set up and run
PSUADE. PSUADE has many other advanced features for handling complex multi-physics
models.

4.1 Confidence Intervals

Let the function be given by:

Y = F (X1, X2) = X1 + X2 + X1X2 + X2

1
, Xi ∈ [0, 1]

and we would like to compute the few moments of this function assuming the inputs are
uniformly distributed. We select Latin hypercube sampling with a sample size of 1000. The
jobs are to be run in sequential mode. The corresponding PSUADE input file psuade.in is:

13



PSUADE

INPUT

dimension = 2

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = LH

num_samples = 1000

randomize

END

APPLICATION

driver = ./testmain.py

END

ANALYSIS

analyzer method = Moment

diagnostics 3

END

END

The driver program can be in any language provided that it is executable. Our example
uses Python to simulate the above function (testmain.py:

#!/usr/local/bin/python

import string

import sys

infile = open(sys.argv[1], "r")

lineIn = infile.readline()

ncols = string.split(lineIn)

n = eval(ncols[0])

lineIn = infile.readline()

ncols = string.split(lineIn)

X1 = eval(ncols[0])

lineIn = infile.readline()

ncols = string.split(lineIn)

X2 = eval(ncols[0])

infile.close()

Y = X1 + X2 + X1 * X2 + X1 * X1

outfile = open(sys.argv[2], "w")

14



outfile.write("%e \n" % Y)

outfile.close()

After these files have been prepared (These files can be found in the Examples/UserExample
directory. Make sure the python link in the testmain.py file is correct, and that testmain.py
has execute permission), run PSUADE with:

[Linux] psuade psuade.in

and, at the completion of the runs, the moment information will be displayed and the
psuadeData file will also be created for use in further analysis.

4.2 Basic Regression Analysis

Suppose we use the above function again and we would like to perform a quadratic regression
analysis. We can reuse the data in the psuadeData file from the last exercise (let’s copy this
file to psData so that it will not be overwritten by PSUADE). To do so, the ANALYSIS
section in psData has to be modified to:

PSUADE

... data ...

INPUT

...

END

OUTPUT

...

END

METHOD

...

END

APPLICATION

...

END

ANALYSIS

analyzer method = RSFA

analyzer rstype = quadratic

END

END

This modified file is to be run with PSUADE via:

[Linux] psuade psData

and regression analysis results (the regression coefficients and R2) will be displayed.

15



4.3 Screening for Important Inputs

A useful design and analysis tool in PSUADE is parameter screening using the Morris
method, which is an effective variable selection method when the number of inputs is large
(say, > 15). The corresponding PSUADE input file should be set up as (say, for a 20-
dimension problem in the Examples/MOATTest directory):

PSUADE

INPUT

dimension = 20

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

...

variable 20 X20 = 0.0 1.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = MOAT

num_samples = 210

randomize

END

APPLICATION

driver = ./morris_simulator

END

ANALYSIS

analyzer method = MOAT

diagnostics 3

END

END

Here the sample size should be a multiple (usually 10) of K + 1 where K is the number
of inputs. The driver program can be constructed in a similar manner as before (and thus is
not to be given here). Again, PSUADE is launched with this input file and screening results
will be displayed at completion.

Alternatively, the analysis can be performed interactively by (again psuadeData has been
created and has been copied to the psData file):

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

16



PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 210

nInputs = 20

nOutputs = 1

psuade> moat

... (MOAT results) ...

...

Create screening diagram ? (y or n) y

matlab/scilab screening diagram file name (no extension): screen.m

MOAT screening diagram matlab file = screen.m

psuade> quit

[Linux]

Thereafter, you can launch Matlab and run screen to view the Morris screening diagram
(scatter and bootstrap plots can also be generated).

Screening can also be done via other methods such as the Delta method and approximate
modeling method (use MARS to do the ranking) which will not be covered in detail here.

4.4 Response Surface Analysis

Since main effect analysis requires many model evaluations to ensure sufficient accuracy, it
may not feasible for computationally expense functions. However, when the input-output
relationship is well-behaved (namely, smoothly varying), response surface methods can be
used to create a cheap surrogate for the actual function. In the following, we describe how
to use PSUADE to create response surfaces and how to use response surface for quantita-
tive analysis. The first step in creating a response surface is to select a sampling method.
Typically, a space-filling sample such as quasi-Monte Carlo or maxi-min Latin hypercube is
adequate (PSUADE also has advanced capabilities to create response surfaces using adaptive
sampling techniques). The input file (psuadeRS.in in the Examples/UserExample directory)
for sampling is:

PSUADE

INPUT

dimension = 2

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

17



METHOD

sampling = LPTAU

num_samples = 300

END

APPLICATION

driver = ./testmain.py

END

ANALYSIS

diagnostics 1

END

END

Here we choose the LP-τ quasi-Monte Carlo method based on the Sobol’ sequence with
a sample size of 300. This sample is then evaluated via

[Linux] psuade psuadeRS.in

At the conclusion of the runs, a file named psuadeData will be created which contains
the data set (inputs and outputs). Next, rename this file to, for example, psData. In the
next step, we check to to see if this data set can be fit with some surface-fitting schemes. A
popular scheme is the multivariate adaptive regression splines (MARS) developed by Jerome
Friedman. To check the goodness of the fit, we launch the PSUADE command line mode
and the details of a session is given below:

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 300

nInputs = 2

nOutputs = 1

psuade> rscheck

Which response surface tool to use ?

Available response surface tools:

0. MARS

1. Linear regression

.....

12. MARS with bootstrap aggregating (bagging)

Enter you choice ? 0

.....

RSFA: L 0: interpolation error on training set =

18



L1n error = 2.431e-04 (unscaled), 3.540e-04(scaled)

Avg error = -4.150e-08 (unscaled), 4.574e-05(scaled)

RMS error = 5.048e-04 (unscaled), 9.115e-04(scaled)

Max error = 5.338e-03 (unscaled, BASE=1.004e+00)

Max error = 6.774e-03 ( scaled, BASE=1.333e-01)

Based on 300 training points (total=300).

Perform cross validation ? (y or n) y

Enter the number of groups to validate : (2 - 300) 30

.....

.....

psuade> quit

[Linux]

The command rscheck first asks for which response surface tool to select and then it
displays the interpolation error statistics (error checking on the original data set). If cross
validation is selected, the number of groups is to be specified (that is, divide the sample into
k groups, hold out one group at a time and compile prediction error statistics). Subsequently,
cross validation will be performed, a summary of error statistics will be displayed and an
error file (RSFA CV err.m or RSFA CV err.sci) will be created to be plotted with Matlab or
Scilab.

If rscheck shows that the sample is not good enough to represent the model input-output
relationship (the scaled RMS error or the Max error is large), more sample points should be
added to the original sample until sufficient accuracy is attained. Or, a different response
surface can be applied to use whether it gives a better fit.

Once the sample and the corresponding response surface scheme are deemed to be satis-
factory, the data set (say, again in the psData file), it can be used for main effect analysis.
The setup is the same as in the last section, except that the definition of driver is different
in this case (this is the psuadeRSME.in file in Examples/UserExample):

PSUADE

INPUT

dimension = 2

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = LH

num_samples = 1000

num_replications = 50

19



randomize

END

APPLICATION

driver = psData

END

ANALYSIS

analyzer method = MainEffect

END

END

Again, simple run the following command

[Linux] psuade psuadeRS.in

and main effect results will be displayed.
More advanced features for main effect analysis include the handling of correlation inputs

(governed by some inequality conditions) and recursive analysis, which are not described in
this document.

4.5 Main Effect and Total Sensitivity Analysis

Main effect analysis studies the first order sensitivities of individual input parameter based
on variance decomposition. The sensitivity indices can be computed using replicated Latin
hypercube sampling with the main effect analysis, the FAST sampling and analysis, or direct
numerical integration using response surfaces. In the following example, we describe the use
of the replicated Latin hypercube approach. The input file is given as follow (this can be
found in the Examples/UserExample/psuadeME.in file):

PSUADE

INPUT

dimension = 2

variable 1 X1 = 0.0 1.0

variable 2 X2 = 0.0 1.0

END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = LH

num_samples = 1000

num_replications = 50

randomize

END

20



APPLICATION

driver = ./testmain.py

END

ANALYSIS

analyzer method = MainEffect

END

END

Here the sample size is 1000 based on 50 replications of Latin hypercube with 1000/50 =
20 levels. To run this analysis, go to Examples/UserExample and issue the following (make
sure to change the file permission to allow Python script to be execute-ready):

Linux] psuade psuadeME.in

At the conclusion of the analysis, main effect statistics will be displayed. More informa-
tion will be displayed if the diagnostics level is increased.

There are two other alternatives to perform main effect analysis:

1. Use response surfaces in place of the simulator; and

2. Use direct numerical integration on the response surface.

The first alternative can be used simply by replacing ‘driver = simulator’ in the PSUADE
input file with ‘driver = psData’ where ‘psData’ is a PSUADE data file containing a set of
sample inputs and outputs.

The second alternative can be performed by first generating and running a sample (say
the result has been put into a file called ‘psData’). The next step consists of launcing
PSUADE’s command line interpreter:

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 100

nInputs = 2

nOutputs = 1

psuade> rssobol1b

...

Choose which output

Choose how many bootstrap samples to use

...

...

21



rssobol1 Statistics (based on 100 replications):

Input 1: mean = 1.1243143e+00, std = 0.0123132e+00

Input 2: mean = 2.5523545e+00, std = 0.1232000e+00

Matlab plot for first order sensitivities is in matlabrssobol1b.m.

psuade> quit

[Linux]

At the conclusion of the session, the main effects together with their standard deviations
will be displayed. In addition, a Matlab file is also available for visualizing the main effects.

Total sensitivity analysis can be performed in a similar fashion by using ‘rssoboltsib’ in-
stead. Also, more sophisticated quantitative sensitivity analyses involving input correlations
are available. There are two ways to include input correlations (input constraints) into a
main effect analysis:

1. If you are using replicated Latin hypercube (on the simulator or on response surface),
the steps are: (a) generate the sample; (b) apply input constraints to filter out infeasible
sample points; (c) run the ‘reduced’ sample; and (d) launch PSUADE and run ‘me’.

2. You can also use numerical integration (‘rssobol1b’). You will also need to turn on the
‘rs constraint’ command in your sample file. The syntax is:

analyzer rs_constraint = constrSample indexFile Lbound Ubound

where ‘constrSample’ is another PSUADE sample, ‘indexFile’ file contains a subset
of input indices for constraining, and ‘Lbound’ and ’Ubound’ are lower and upper
bounds of the feasible region. For example, if you desire to impose constraint on input
2 and 3 such that 0 < X2 + X3 < 1, then ‘constrSample’ should contain a sample
for the function Y = X2 + X3; ‘indexFile’ should contain 2 and 3; ‘Lbound’= 0; and
‘Ubound’= 1.

4.6 Numerical Optimization

Let the function for numerical optimization be the two-dimensional Rosenbrock function:

Y = 100(X2 − X2

1
)2 + (1 − X1)

2, Xi ∈ [−2, 2].

The PSUADE input file for numerical optimization can be constructed as follow (here bobyqa
is a public domain software developed by Michael Powell):

PSUADE

INPUT

dimension = 2

variable 1 X1 = -2.0 2.0

variable 2 X2 = -2.0 2.0

22



END

OUTPUT

dimension = 1

variable 1 Y1

END

METHOD

sampling = FACT

num_samples = 9

END

APPLICATION

driver = ./simulator

opt_driver = ./simulator

END

ANALYSIS

optimization method = bobyqa

optimization num_local_minima = 3

optimization max_feval = 10000

optimization tolerance = 1.0e-4

optimization print_level = 2

END

END

This analysis first creates a 3×3 factorial sample. The 9 sample points are evaluated and
the 3 (since num local minima = 3 points with the lowest output values are selected as the
starting points for a multi-start optimization. The maximum number of function evaluation
is set to be 10000 and the termination tolerance is set to be 1e − 4. The driver points to an
executable called simulator. Again, a PSUADE data file such as psData can be used instead.

Users can also specify their own initial points which have the same format as in the
PSUADE IO section in the psData file.

The above example is located in the Examples/OptRosenbrock directory. Simply compile
the simulator.c file and then run psuade psuadeBobyqa.in to see optimization in action.

There are other advanced features in optimization such as avoiding repeated function
evaluations (this is very useful for restart in the case when the function evaluation is expen-
sive).

4.7 Bayesian Calibration

Let the function for numerical optimization be the function:

Y = F (X; a, b)

where X is the design parameter; and a and b are parameters in the function that are not
precisely known except that they fall between 0 and 1. We do, however, have a set of data
points {XiYi}

N

i=1
in an effort to find the true values of a and b. One way to fine these

23



values is to perform a deterministic numerical optimization. If the outputs Yi’s are noisy,
an alternative is to perform a Bayesian inference. A few things need to be set up for this
inference:

1. A function that returns the errors between prediction and data given any possible a
and b:

ei = Yi − F (Xi); i = 1, · · · , N ; and

2. Information that are needed to create a likelihood function in the Markov Chain Monte
Carlo (MCMC) iterations.

A skeleton for the function is (which is compiled into an executable called ‘simulator’):

#include <stdio.h>

main(int argc, char **argv)

{

int i, m, N;

double AB[2];

/* set up Y[i]’s and define the function F */

fopen(argv[1], "r");

fscanf(fp, "%d", &m);

for (i = 0; i < m; i++) fscanf(fIn, "%lg", &AB[i]);

fclose(fp);

fopen(argv[2], "w");

for (i = 0; i < N; i++) fprintf(fp, " %e\n", Y[i] - F(X[i],AB));

fclose(fp);

}

Let N = 4 is the number of data point and let the noise in the data has a standard
deviation of 0.1. We will specify these information to facilitate the construction of the
likelihood function by creating a file, say ‘mcmcFile’, that contains

PSUADE_BEGIN

1 0 4

1 0 0.1 0 0.1 0 0.1 0 0.1

PSUADE_END

The first and last lines are markers recognized by PSUADE. The second lines specifies
that there is a set of data with 4 elements and the second number indicates that there is no
design parameter (design parameters are useful when discrepancy modeling is included in
the Bayesian inference).

Since Bayesian inference generally requires many simulations, often the expensive sim-
ulator is replaced by an inexpensive surrogate (or response surface). We follow the steps
above in creating the response surfaces for the N error outputs from the simulator.

The PSUADE input file (‘psuadeRS.in’) to generate the Latin hypercube sample (of size
100) for response surfaces is:

24



PSUADE

INPUT

dimension = 2

variable 1 A = 0.0 1.0

variable 2 B = 0.0 1.0

END

OUTPUT

dimension = 4

variable 1 Y1

variable 2 Y2

variable 3 Y3

variable 4 Y4

END

METHOD

sampling = LH

num_samples = 100

END

APPLICATION

driver = ./simulator

END

ANALYSIS

diagnostics 1

END

END

Again, simple run the following command

[Linux] psuade psuadeRS.in

and then move the result data file ‘psuadeData’ to, say, ‘psData’. After the preparation
steps have been completed, Bayesian inference can be launched by:

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

load complete : nSamples = 100

nInputs = 2

nOutputs = 1

psuade> rsmcmc

.....

25



===> Enter the spec file for building likelihood function : mcmcFile

.....

Output 1

Enter you choice (for response surface type) ? 0

Output 2

Enter you choice (for response surface type) ? 0

Output 3

Enter you choice (for response surface type) ? 0

Output 4

Enter you choice (for response surface type) ? 0

.....

MCMC PHASE 1: BURN In

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MCMC PHASE 1 completed

.....

MC PHASE 2 completed

**********************************************************************

MCMC: final matlabmcmc.m file has been created.

======================================================================

MCMC: matlabmcmc2.m file (2-input analysis) is ready.

**********************************************************************

psuade> quit

[Linux]

If the inference is completed successfully, the two Matlab (or Scilab) files will contain the
posterior distributions for visualization.

There are many advanced features in PSUADE’s MCMC method such as modeling dis-
crepancy, tuning MCMC parameters, generating a posterior sample, and including response
surface errors. These features can be selected by turning on the ‘ana expert’ mode (by
entering ‘ana expert’ on the command line before running ‘rsmcmc’). Finally, there is a
similar command called ‘mcmc’ which uses the actual simulator instead of response surfaces.
However, this method may be computationally expensive even though the simulator is fast
because of the I/O requirement in running the simulator. A remedy for this is to compile
this function into PSUADE and use ‘driver = PSUADE LOCAL’ to activate that function
(this will speed up evaluation by reducing the I/O overhead).

4.8 A More Comprehensive Example

Suppose we are given a simulation model with 2 uncertain parameters X1 and X2 such that
Y = F (X1, X2) and with some given default values for X1 and X2. Suppose we do not know
the uncertain range for X1 and we arbitrarily impose its uncertain range to be +/-20% of
its default value. For X1, we also impose an initial range of +-20%, but we have another

26



experiment that will help refine its uncertainty range. Our overall objective is to quantify
the uncertainty and parameter sensitivity of this model.

The steps to achieve the objective are (in Examples/CompositeTest):

1. Compile the available experimental data for refining the uncertainty distribution of X2

(in file ‘expdata2’).

2. Acquire the model (‘simulator2.c’) to apply Bayesian inference to refine X2 and compile
it (to become ‘simulator2’).

3. Put together a PSUADE input file (‘psuade2.in’) for Bayesian inference:

[Linux] psuade

PSUADE

INPUT

dimension = 1

variable 1 X2 = 0.4 0.6

END

OUTPUT

dimension = 1

variable 1 Y

END

METHOD

sampling = FACT

num_samples = 10

randomize

END

APPLICATION

driver = ./simulator2

END

ANALYSIS

diagnostics 1

END

END

4. Run PSUADE with ‘psuade2.in’ and put the result in ‘psData2’.

5. Apply MCMC to generate a posterior sample for X2 (turn on ‘ana expert’ mode).

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

27



Uncertainty Analysis and Design Exploration

psuade> load psData2

load complete : nSamples = 100

nInputs = 2

nOutputs = 1

psuade> ana_expert

psuade> rsmcmc

.....

Say ’no’ to the first question.

===> Enter the spec file for building likelihood function : expdata2

Say ’no’ to the next question.

.....

Output 1

Enter you choice (for response surface type) ? 2

Enter 50000, 50000, and 20 to the next 3 questions.

Enter 1 and 0 next to select input 1 and terminate.

Say ’no’ to discrepancy modeling.

Say ’yes’ to create posterior sample.

Enter 100 to the next question.

.....

MCMC PHASE 1: BURN In

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MCMC PHASE 1 completed

.....

MC PHASE 2 completed

.....

**********************************************************************

MCMC: check the MCMCPostSample file for a posterior sample.

psuade> quit

[Linux]

6. Convert the MCMC posterior sample to PSUADE data format by removing the first
and last lines; and replacing the second line with ‘100000 1 0’ (100000 points with 1
input and no output). Then read this file in using ‘read xls MCMCPostSample’ and
write it to ‘sample2’ using the ‘write’ command.

7. Generate a large sample for X1 by running psuade psuade1.in (generate sample only
and no simulation) and rename ‘psuadeData’ to ‘sample1’.

8. Concatenate the two 1-parameter samples ‘sample1’ and ‘sample2’ to be a two-parameter
sample using the ‘rand draw2’ command.

[Linux] psuade

*** ********************************************************* ***

28



*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> rand_draw2

Enter name of the first file : sample1

Enter name of the second file : sample2

Size of the sample to be drawn : (1-2000000) 100000

Store random sample to : (filename) newSample

psuade> quit

[Linux]

9. Prepare the original 2-parameter simulation model (‘simulator.c’) by compiling it (to
become ‘simulator’).

10. Set the driver in ‘newSample to be simulator’ and run PSUADE on ‘newSample’. After
that rename ‘psuadeData’ to ’psData’. (Alternatively, if ‘simulator’ is expensive to run,
replace it with a small sample and a response surface type.)

11. Launch PSUADE to compute uncertainties and sensitivities (turn on ‘ana expert’ mode
for Matlab graphics.

[Linux] psuade

*** ********************************************************* ***

*** Welcome to PSUADE (version 1.6.0) ***

*** ********************************************************* ***

PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration

psuade> load psData

psuade> ua

psuade> me

psuade> quit

[Linux]

12. If desired, compare the uncertainty distribution with the sample set without using
experimental data (by running PSUADE on ‘psuade.in’).

29


