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Abstract

This paper introduces simple model-building
evolutionary algorithms (EAs) that operate
on continuous domains. The algorithms are
based on supervised and unsupervised dis-
cretization methods that have been used as
preprocessing steps in machine learning. The
basic idea is to discretize the continuous vari-
ables and use the discretization as a simple
model of the solutions under consideration.
The model is then used to generate new solu-
tions directly, instead of using the usual op-
erators based on sexual recombination and
mutation. The algorithms are tested with
several functions and the results suggest that
combining discretizers with EAs may be an
interesting path for future developments.

1 INTRODUCTION

Probabilistic model-building evolutionary algorithms
(EAs) are a promising path to construct reliable opti-
mization algorithms that can solve difficult problems
in reasonable times. However, most of these algo-
rithms use discrete representations, which may not be
natural to the problem at hand.

This paper presents simple model-building EAs that
work on continuous domains. The algorithms are
based on discretization methods that are used in ma-
chine learning. We distinguish between supervised dis-
cretizers that use a class label to find intervals and un-
supervised methods that do not use labels. In EAs the
labels are determined by the selection method and cor-
respond to whether an individual survives to the next
generation or not. In essence, the algorithms proposed
here discretize the continuous variables and use the
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discretization as a simple model of the solutions un-
der consideration. The model is used to generate new
solutions directly; the EA omits the usual operators
based on sexual recombination and mutation.

Typical discretization algorithms consider only one
variable at a time. However, to succeed in problems
where there are significant correlations between sev-
eral variables, EAs must consider the related variables
simultaneously or use exponential time. For space rea-
sons, this paper considers only univariate methods, but
it discusses a natural extension of one method to mul-
tivariate problems.

The next section briefly reviews model-building EAs.
Section 3 describes some supervised and unsupervised
discretization algorithms and the corresponding EAs.
Section 4 presents experimental results. Finally, sec-
tion 5 summarizes the paper and offers some recom-
mendations for future research.

2 BUILDING MODELS TO GUIDE
THE SEARCH

The idea of building probabilistic models and using
them to guide the search of EAs has been around
for some time. The complexity of the models has in-
creased over time as the methods of building models
from data mature and more powerful computers be-
come available. This section briefly reviews previous
work. Interested readers should consult the reviews by
Pelikan et al. (1999) and Larraiiaga et al. (1999).

The simplest model-building EAs use a product of uni-
variate and independent probability distributions as
the model of solutions. Baluja (1994) introduced the
PBIL algorithm that uses a binary alphabet and a vari-
ation of the Hebbian learning rule to update its model.
The compact GA (Harik et al., 1998) and the UMDA
(Miihlenbein, 1998) are other examples of algorithms
that use univariate models and operate on binary al-
phabets. Servais et al. (1997) extended PBIL to dis-



crete alphabets of higher cardinality and Sebag and
Ducoulombier (1998) extended it to continuous vari-
ables. The model used by Sebag and Ducoulombier
is a product of normal densities, and is similar to the
model used by Rudlof and Koéppen (1996). Gallagher
et al. (1999) used a mixture of normal distributions.

More sophisticated algorithms such as MIMIC
(de Bonet et al., 1996) and the BMDA (Pelikan &
Miihlebein, 1999) capture relations between pairs of
variables. Pelikan et al. (1999), Etxeberria and
Larrafiaga (1999), and Miihlenbein and Mahnig (1999)
introduced algorithms that learn Bayesian networks,
which can represent relations among arbitrary num-
ber of variables. However, these algorithms consider
only discrete variables, and it is inefficient to discretize
the domain variables as a preprocessing step because if
b bins are used for each variable, a node in the network
with n — 1 parents would need to store b™ bins.

Larrafiaga et al. (1999) proposed several EAs for con-
tinuous domains. Their first algorithm uses univari-
ate distributions, then they adapted the MIMIC algo-
rithm, and finally they proposed a method based that
starts with a complete Gaussian network and tests all
possible edge exclusion to identify conditional inde-
pendences among the variables.

Sophisticated model-building EAs can consistently
solve problems with complex interactions among many
variables, but constructing probabilistic networks from
data is costly. Bosman and Thierens (1999) discussed
several ways to estimate the density of the selected
solutions and determined that the algorithmic com-
plexities vary from O(n2) to O(n?).

There have been other approaches to learn a model
to guide the search of EAs. For example, Michalski
(2000) introduced a system that induces rules that
classify individuals into three groups depending on
their fitness. The rules are used to generate new indi-
viduals. Michalski’s method can operate on continu-
ous variables, but they have to be discretized first.

3 DISCRETIZATION-BASED EAs

Analogously to machine learning algorithms, discretiz-
ers that use information about the label of the solu-
tions are called supervised, and those that do not are
called unsupervised.

3.1 UNSUPERVISED METHODS

The simplest unsupervised discretization method is to
divide the range of observed values into b bins of equal
width. Although it is easy to implement, this method

is very sensitive to outliers, and may not adequately
represent the distribution of each variable.

A related unsupervised method is to divide the range
into b bins of equal frequency. This method is less sus-
ceptible to outliers, and the intervals would be closer
to each other in regions where there are more elements
and farther apart in sparsely-populated regions, which
represents the distribution of each variable better than
the equal-width method. In both methods the user
must specify the number of bins b.

The corresponding EA is the same for these two un-
supervised methods. In each iteration, the algorithm
selects ng promising solutions, discretizes each variable
of these solutions independently, and for each variable
generates n /b uniformly-distributed random numbers
in each bin. These random numbers correspond to the
values of the variable in the new population. Since the
discretization captures the distribution of the selected
individuals, we expect that the new individuals will
have similar univariate marginal distributions than the
selected individuals. This does not guarantee that the
fitnesses of the new individuals will be as good as the
selected ones, unless the hypothesis of the variables
being independent holds.

This algorithm monotonically reduces the range of val-
ues for each variable, which is desired as we want to
narrow the search. But if the algorithm narrows the
search too fast, it may impede a proper exploration of
the search space, which might impact negatively the
quality of the solutions. One solution would be to use
a large population to sample the search space better,
but larger populations represent higher computational
costs. Another solution would be to slightly enlarge
the range of values generated for the new population.
One possibility would be to add additional bins with a
few elements at the extremes of the discretized range,
but this creates a few additional design decisions (e.g.,
what is the range of the additional bins and how many
elements should we put in them?). Another possibility
is to adopt a mutation mechanism.

Possibly the major problem with the methods de-
scribed in this section (and other algorithms that de-
pend on univariate models) is their inability to repre-
sent accurately disjoint regions of promising solutions.
The problem is that the algorithm discretizes the en-
tire range of the selected individuals, which may in-
clude large areas of low performance. The equal-width
bins method is the most sensitive to this problem since
a large fraction of the bins may be used to represent
regions of low performance. Certainly, it may be useful
to generate a few points in the regions where the ob-
served performance of a variable is low, because the



apparent low-performing region may have not been
sampled adequately missing good solutions. It may
also be possible to reach good results when the ob-
served low variable is combined with other variables
in regions that have not been sampled yet. However,
if the low-performance region dominates the range of
a variable, it may be wasteful to use these methods.

3.2 SUPERVISED METHODS

Supervised discretizers find intervals where all or most
of the data instances have the same label and the la-
bels are different across consecutive intervals. Super-
vised discretizers assume that the data instances are
labeled with the class to which they belong. In our
case, the individuals have binary labels corresponding
to whether they were selected to survive or not.

Holte (1993) proposed a simple algorithm that consists
on sorting the observed values of a variable and greed-
ily dividing the domain into bins that contain instances
with the same label. To avoid having one bin for each
observed value, each bin is required to have a mini-
mum number of elements. Fayyad and Irani (1993)
proposed a recursive method that finds intervals that
minimize the class information entropy. The optimal
boundary T* that minimizes the entropy is chosen to
partition the range, and the algorithm is applied re-
cursively to the sets to the left and right of T*. The
resulting intervals will be closer to each other in the re-
gions with high entropy, and far apart in the uniform
regions where the entropy is low. In a sense, super-
vised discretizers create a rough model that predicts
the class label based on the intervals. This model may
be too inaccurate to be a practical classification algo-
rithm, but it may be sufficient to guide the search of
an EA. Recognizing that Fayyad and Irani’s method
can be regarded as building a tree, Kohavi and Sa-
hami (1996) used C4.5 to discretize continuous vari-
ables. The next section shows some experiments using
decision trees as supervised discretizers.

The corresponding EA is the same for these two su-
pervised methods, and is similar to the EA for un-
supervised methods. The core loop is to apply the
selection method to label the individuals, discretize
each variable using all the individuals (not just the se-
lected), and generate uniform random numbers only
in the intervals that correspond to the selected indi-
viduals. Note that this algorithm can easily represent
disjoint regions of promising solutions, and the ranges
of promising solutions also decrease monotonically.

As mentioned before, it may be useful to generate a
few points in the regions of low performance. It is not
necessary to modify the sampling procedure described

above, because all the probabilistic selection methods
assign a non-zero probability of selection to all indi-
viduals, including those with low fitness.

The natural extension of these algorithms is to con-
sider multivariate discretization. This, of course, is
much more complex than discretizing one variable at a
time, but we can continue to borrow from the machine
learning field and use inductive learning algorithms to
build models of the individuals. For example, we may
use decision trees to build a multivariate model of the
current solutions in a EA. Decision trees are appealing
in classification tasks because they are fast to create,
reasonably accurate, and easy to interpret. Also, deci-
sion trees ignore variables that do not seem related to
the class label, which can be an advantage in our case
because it permits the algorithm to focus on the vari-
ables that have the greatest influence on the fitness
at a particular stage of the search. In a sense, this
reduces the dimensionality of the problem over time,
which may result in algorithms that scale up better
to the dimensionality than other model-building EAs.
However, using trees introduces some difficulties on the
generation of new individuals. For space reasons, we
do not explore this option further. Of course, we are
not limited to use decision trees to build multivariate
models: we could use other learning algorithms that
work on continuous domains or other discretization al-
gorithms such as the algorithm of Kozlov and Koller
(1997) and vector quantization.

4 EXPERIMENTS

The experiments test four univariate model-building
EAs: two unsupervised algorithms based on equal-
width and equal-frequency histograms, and two super-
vised algorithms based on Holte’s discretization and
decision trees. The test functions are commonly used
to evaluate EAs and other optimization algorithms.

Most algorithms used a population size of 100 individ-
uals for all problems, the exception was the EA based
on Holte’s discretization which used 400. Four-way
tournaments were used to select/label the individuals.
No mutation was used, which may explain some of the
poor results. The histogram used only five bins. The
experiments were halted after 200 generations.

Table 1 presents the average and the standard devia-
tion (over 100 trials) of the best value found by each
algorithm. The table specifies the number of dimen-
sions of each problem and the initial range of each vari-
able. The results suggest that the simple algorithms
perform well, but on individual runs, the EAs based
on supervised discretizers found competitive solutions.



Function Dim. Range Equal Width

Equal Freq. Holte’s Trees

Sphere 10 [10,10] _ 0.00011(0.00039)
Griewank 10 [-600,600] 6.5e-6(1.29¢e-6)
Schwefel 10 [-10,10] 0.085(0.010)

0.00082(0.002) 0.00421(0.0052) 0.082(0.014)
0.00015(0.00033) 0.07843(0.0221)  0.02379(0.0252)
0.00309(0.00345)  0.0145(0.0089) 0.0331(0.0154)

Table 1: Final objective function values of different supervised and unsupervised discretization-based EAs.

5 SUMMARY

This paper proposed several EAs based on univariate
supervised and unsupervised discretizers. The algo-
rithms were tested on a few functions, and the results
appear to favor the simpler unsupervised methods, but
the results are not appear conclusive. In the future,
the algorithms will be tested on other continuous op-
timization problems and compared against traditional
and model-building EAs. Extensions to multivariate
models are necessary.
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