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AN EMBEDDED BOUNDARY METHOD FOR THE WAVE
EQUATION WITH DISCONTINUOUS COEFFICIENTS∗

HEINZ-OTTO KREISS† AND N. ANDERS PETERSSON‡

Abstract. A second order accurate embedded boundary method for the two-dimensional wave
equation with discontinuous wave propagation speed is described. The wave equation is discretized
on a Cartesian grid with constant grid size and the interface (across which the wave speed is discon-
tinuous) is allowed to intersect the mesh in an arbitrary fashion. By using ghost points on either side
of the interface, previous embedded boundary techniques for the Neumann and Dirichlet problems
are generalized to satisfy the jump conditions across the interface to second order accuracy. The re-
sulting discretization of the jump conditions has the desirable property that each ghost point can be
updated independently of all other ghost points, resulting in a fully explicit time-integration method.
We prove that the one-dimensional restriction of the method is stable without damping for arbitrary
locations of the interface relative to the grid. For the two-dimensional case, the previously developed
fourth order ATA-dissipation is generalized to handle jump conditions. We demonstrate that this
operator provides sufficient stabilization to enable long-time simulations while being weak enough
to preserve the accuracy of the solution. Numerical examples are given where the method is used to
study electromagnetic scattering of a plane wave by a dielectric cylinder. The numerical solutions
are evaluated against the analytical solution due to Mie, and pointwise second order accuracy is
confirmed.
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1. Introduction. This paper describes a second order accurate Cartesian em-
bedded boundary method for the two-dimensional wave equation with discontinuous
wave propagation speed. Motivated by wave propagation problems from applications
like seismology, acoustics, and general relativity, where the underlying differential
equations are systems of second order hyperbolic partial differential equations, we
develop a numerical method that directly discretizes the wave equation in second
order formulation. This approach extends previous research [1, 2, 3] to the case of
discontinuous coefficients.

For every second order hyperbolic system, there is an equivalent but larger first
order system. For example, two-dimensional acoustic wave propagation is governed
by a scalar second order wave equation for the pressure, or by a system of three first
order hyperbolic equations governing the two velocity components and the pressure.
Most previous numerical methods for this type of problem have focused on the first
order formulation [4, 5, 6]. For linear wave propagation, a staggered grid is often used
to avoid complications with stability of extra numerical boundary conditions [7] and
spurious waves traveling in the wrong direction [8]. However, Cartesian staggered
grid discretizations are difficult to generalize to handle complex geometries, that is,
boundaries that intersect the grid in an arbitrary way.
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The accuracy of a finite difference approximation of the wave equation with dis-
continuous coefficients was analyzed by Brown [9]. For the one-dimensional case, he
proved that the amplitude error in reflected and transmitted waves is determined by
the accuracy by which the jump conditions are discretized, while the phase error is
determined by the accuracy of the discretization in the interior of the domain. In
the one-dimensional case, Tikhonov and Samarskĭı’s [10] averaging formula was used
to obtain a second order accurate approximation without explicitly discretizing the
jump conditions. Numerical calculations indicated a significant benefit of combining
the second order treatment of the jump conditions with a fourth order method in the
interior of the domain. Unfortunately, it is not known how to generalize the averaging
formula to the two-dimensional case when the discontinuity is not aligned with the
grid, and the combinations of a first order treatment of the jump conditions with a
second or fourth order formula away from the interface gave less impressive results
than in the one-dimensional case.

A fully second order immersed interface method for solving the two-dimensional
acoustic wave equation with discontinuous coefficients was developed by Zhang and
LeVeque [11]. Here, the problem was written as a hyperbolic system of three first
order equations and special difference formulas were developed near the interface,
which take the location of the interface and the jump conditions into account to
achieve second order accuracy. For each grid point next to the interface, a linear
system with 54 equations for 54 unknowns had to be solved to find the values of the
coefficients in the local difference formula. For more complicated hyperbolic systems
(such as the elastic wave equation), even larger systems of equations must be solved
to set up the coefficients.

Finite difference methods for the time-dependent Maxwell equations have been
studied extensively, and a relatively recent overview of the field is provided by Hes-
thaven [12]. Maxwell’s equations are usually written as a first order hyperbolic system
and a Cartesian staggered grid is often employed to discretize the equations in space.
Several second, fourth, and even higher order accurate schemes have been derived to
handle embedded discontinuous coefficients in the one-dimensional case [13, 14, 15, 16],
but these methods generalize only to the two-dimensional case when the material in-
terface is parallel to a grid direction. A brief description of a compact fourth order
accurate implicit staggered grid scheme based on Pade’ approximations is presented
by Turkel and Yefet [17]. Here the Dirichlet condition associated with a perfectly elec-
tric conducting boundary is satisfied on an embedded boundary by locally modifying
the uniform mesh to make the nearest grid points fall on the boundary. However, it
is not clear how this approach can be generalized to handle jump conditions across
material interfaces. Furthermore, this approach can result in a severe time step re-
striction due to small cells at the boundary. An alternative to the staggered grid
approach is presented by Cai and Deng [18], who solve the first order hyperbolic sys-
tem on a node-based grid by combining a Lax–Wendroff scheme in the interior with
an upwinding approach for satisfying jump conditions across an embedded material
interface. However, solving a first order system on a node-based grid can lead to
the aforementioned problem with spurious waves traveling in the wrong direction [8].
Furthermore, the mesh needs to be finer to achieve the same accuracy compared to
when the wave equation is solved in second order formulation [1].

Higher order finite difference schemes for Maxwell’s equations have also been ex-
tended to the curvilinear case [19] and to overlapping grids [20], but these approaches
rely on the availability of a smooth mesh conforming to the interface. We also remark
that there are many Cartesian embedded boundary methods for elliptic and parabolic
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partial differential equations, e.g., [21, 22, 23, 24, 25, 26].
In this paper, we consider the scalar second order wave equation in a two-

dimensional domain Ω = ΩI ∪ ΩII , with a piecewise constant coefficient ρ(x) > 0,

ρ(x) =

⎧⎨
⎩ ρI , x ∈ ΩI ,

ρII , x ∈ ΩII .

Let u(x, t) and w(x, t) denote the solutions in the subdomains ΩI and ΩII , satisfying

utt =
1

ρI
Δu + F (x, t), x ∈ ΩI , t ≥ 0,(1)

wtt =
1

ρII
Δw + F (x, t), x ∈ ΩII , t ≥ 0,(2)

u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ ΩI ,(3)

w(x, 0) = W0(x), wt(x, 0) = W1(x), x ∈ ΩII .(4)

Here, F (x, t) is a forcing function. Let Γ be the smooth interface between ΩI and
ΩII , across which the solutions are coupled by the jump conditions

u = w, x ∈ Γ, t ≥ 0,(5)

1

ρI

∂u

∂n
= − 1

ρII

∂w

∂n
, x ∈ Γ, t ≥ 0.(6)

Note that the normal derivatives are taken outward from both ΩI and ΩII . Hence we
have the minus sign in the latter equation.

For the purpose of our discussion, we assume that ΩI is a bounded domain inside
ΩII , and that ΩII has a rectangular outer boundary where Dirichlet or Neumann
boundary conditions are enforced. The interface between ΩI and ΩII can however
have an arbitrary smooth shape. As will be demonstrated below, the method can be
generalized to several subdomains. Nonrectangular outer boundaries can be handled
using the embedded boundary techniques in [2] and [3].

We discretize the two-dimensional wave equations on a Cartesian grid xi,j =
(ih, jh) in space, where h > 0 is the grid size, and let tn = nδt, n = 0, 1, 2, . . . ,
denote the time-discretization with step size δt > 0. We take un

i,j and wn
i,j to be the

difference approximations of u(xi, yj , tn) and w(xi, yj , tn), respectively. At all grid
points interior to ΩI , a second order accurate approximation of the Laplacian of u is
given by

Δhu
n
i,j =:

1

h2
(un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1 − 4un

i,j), xi,j ∈ ΩI .(7)

In order to form (7) at all grid points in ΩI , we also define un
i,j at the set of ghost

points GI :

GI = {(i, j), xi,j �∈ ΩI , but at least one of xi±1,j ∈ ΩI or xi,j±1 ∈ ΩI}.

A corresponding formula is used to approximate the Laplacian of w at all interior grid
points of ΩII using a corresponding set of ghost points GII .

The solution at the ghost points are determined by the jump conditions (5) and
(6). We start by considering the ghost point ui,j ; see Figure 1.
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Fig. 1. The points used for discretizing the jump conditions.
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Fig. 2. The solution along the normal to the interface is continuous, but its first derivative is
discontinuous.

We can derive second order approximations for the value and normal derivative on
the boundary using Lagrange interpolation between ui,j , uI , and uII (see Figure 2):

BD
i,ju =: gD0 (ξΓ)ui,j + gDI (ξΓ)uI + gDII(ξΓ)uII = u(xΓ

i,j) + O(h2), (i, j) ∈ GI ,(8)

BN
i,ju =: gN0 (ξΓ)ui,j + gNI (ξΓ)uI + gNII(ξΓ)uII =

∂u

∂n
(xΓ

i,j) + O(h2), (i, j) ∈ GI .(9)

The values uI and uII are obtained by Lagrange interpolation, in this case, along the
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horizontal grid lines yj−1 and yj−2,

un
I = r0u

n
i,j−1 + r1u

n
i−1,j−1 + r2u

n
i−2,j−1,(10)

un
II = r3u

n
i,j−2 + r4u

n
i−1,j−2 + r5u

n
i−2,j−2.(11)

The coefficients gD and gN are given in section 4.
To derive corresponding formulas for w along the same normal, we introduce the

virtual ghost point value wv, defined at the same location as uI ; see Figure 1. Since
wv is outside ΩII and it is in general located in between grid points, this value is only
used to form the discrete jump conditions. Lagrange interpolation between wv, wi,j ,
and wII (see Figure 2) gives for (i, j) ∈ GI

V D
i,jw =: gD0 (ξI − ξΓ)wv + gDI (ξI − ξΓ)wi,j + gDII(ξI − ξΓ)wII(12)

= w(xΓ
i,j) + O(h2),

V N
i,jw =: gN0 (ξI − ξΓ)wv + gNI (ξI − ξΓ)wi,j + gNII(ξI − ξΓ)wII(13)

=
∂w

∂n
(xΓ

i,j) + O(h2).

Note that there is a symmetry between the interpolation formulas for uI and wII

that simplifies the calculation of wII . If the normal going through xi,j intersects the
horizontal grid line y = yj−1 at x = xi − αh, the extension of the same normal will
intersect the grid line y = yj+1 at x = xi + αh. The Lagrange interpolation formula
for wn

II therefore becomes

wn
II = r0w

n
i,j+1 + r1w

n
i+1,j+1 + r2w

n
i+2,j+1.

Inserting the discrete approximations of the value and normal derivatives of u
and w into the jump conditions (5), (6) results in the discretized jump conditions

BD
i,ju

n = V D
i,jw

n,(14)

1

ρI
BN

i,ju
n = − 1

ρII
V N
i,jw

n.(15)

Hence, we get a 2 × 2 linear system for the unknowns (un
i,j , w

n
v ):

⎛
⎝ gD0 (ξΓ) − gD0 (ξI − ξΓ)

gN0 (ξΓ)/ρI gN0 (ξI − ξΓ)/ρII

⎞
⎠

⎛
⎝ un

i,j

wn
v

⎞
⎠(16)

=

⎛
⎝ gDI (ξI − ξΓ)wn

i,j + gDII(ξI − ξΓ)wn
II − gDI (ξΓ)un

I − gDII(ξΓ)un
II

−(gNI (ξI − ξΓ)wn
i,j + gNII(ξI − ξΓ)wn

II)/ρII − (gNI (ξΓ)un
I + gNII(ξΓ)un

II)/ρI

⎞
⎠ .

We solve this system for un
i,j and ignore the virtual ghost point value wn

v . A formula
for the w-ghost points can be derived in a similar way.

Note that this discretization of the jump conditions has the desirable property
that each ghost point can be updated independently of all other ghost points. Hence,
there is no coupling along the boundary.



WAVE EQUATION WITH DISCONTINUOUS COEFFICIENTS 2059

i,j−1

i,j

Γ

i−1,j−1

i−2,j−1

i,j−2i−1,j−2i−2,j−2

u

u

Ω I

u

u

u u u

n

Fig. 3. The Lagrange interpolation formula for uI can in rare cases contain outside points.

Our practical experience with the above interpolation procedure from previous
work [2, 3] and the numerical examples in section 6 indicate that it is almost always
possible to find enough interior points to compute uI , uII , and wII , as long as the
interface Γ is well resolved on the grid. However, there are rare cases when one or
two of the points in the interpolation stencil for uI can be outside the domain; see
Figure 3. In this case, the interface curve has a local maxima just above yj−1, between
xi−1 and xi, such that the normal going through ui,j has the form n = (ζ, 1− ζ2/2)T ,
ζ > 0, ζ � 1. Since ζ > 0, we choose to interpolate from ui−2,j−1, ui−1,j−1, and ui,j−1

to obtain uI . In this situation it is possible for ui−2,j−1 to be outside the domain
ΩI , even though the interface is well resolved on the grid. Since the interpolation
formula for updating ui,j contains an outside point, we call ui,j a coupled ghost
point. However, ui−2,j−1 is itself a ghost point which uses only interior points in
its interpolation stencils. Such points are called uncoupled ghost points. Hence, if
we first compute the uncoupled ghost point value ui−2,j−1 we will have all values
necessary for computing the coupled ghost point value ui,j . In all smooth interface
cases we have tried, any coupled ghost points have depended only on uncoupled ghost
points, allowing us to use a pointwise procedure where we first update all uncoupled
ghost points, followed by updating any coupled ghost points. Some attempts to treat
boundaries with corners with the embedded boundary method were reported in [2].
However, the solution can exhibit singularities at the corners which present a more
severe set of challenges than merely finding enough grid points to interpolate from.
In the following we assume that the interface is smooth and well resolved on the grid.

The remainder of the paper is organized as follows. In section 2, we prove that
the discretization of the jump conditions is stable in the one-dimensional case. A
simplified stability argument, based on a modified equation model, is presented in sec-
tion 3. The solvability of the discrete jump conditions in the two-dimensional setting
is demonstrated in section 4. Section 5 discusses time-integration and a generalization
of the ATA-dissipation operator (see [2]), which is used to stabilize the scheme for
long time-integrations. In section 6, we use the method to study electromagnetic scat-
tering of a plane wave by a dielectric cylinder, where there is a century-old analytical
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solution due to Mie [27]. The method is finally applied to two more complicated scat-
tering problems: one including many subdomains and the other with a more irregular
interface.

2. Stability. We start by considering the one-dimensional wave equation with
discontinuous wave propagation speed,

utt = uxx, xmin ≤ x ≤ 0, t ≥ 0,(17)

wtt = c2wxx, 0 ≤ x ≤ xmax, t ≥ 0,(18)

u(x, 0) = U0(x), ut(x, 0) = U1(x), xmin ≤ x ≤ 0,(19)

w(x, 0) = W0(x), wt(x, 0) = W1(x), 0 ≤ x ≤ xmax,(20)

where c2 > 0, xmin < 0, and xmax > 0, subject to the Dirichlet boundary conditions

u(xmin, t) = 0, w(xmax, t) = 0, t ≥ 0.(21)

At the interface, the jump conditions are

u(0, t) = w(0, t),

ux(0, t) = c2wx(0, t).

Using the notation in Figure 4, we discretize the problem in space on a uniform grid
xν = −αh + νh, with grid size h > 0, and denote a grid function by uν(t) = u(xν , t).
Divided difference operators are defined by Dx

+uν = (uν+1 − uν)/h and Dx
−uν =

Dx
+uν−1. To model the two-dimensional case, we shift the grid so the discontinuity in

the wave speed does not coincide with a grid point, i.e., 0 < α < 1. We want to focus
the discussion on the stability of the discretization of the jump conditions, and we
take xmin and xmax to coincide with grid points, i.e., xmin = x−N and xmax = xN .

The semidiscrete problem becomes

d2uν

dt2
= Dx

+D
x
−uν , ν = 0,−1,−2, . . . ,−N + 1,(22)

d2wν

dt2
= c2Dx

+D
x
−wν , ν = 1, 2, 3, . . . , N − 1,(23)

subject to Dirichlet boundary conditions

u−N = 0, wN = 0, t ≥ 0.(24)

(1−α)hαh

u -2 u -1 u0 u1

x

x=0
w w w w0 1 2 3

Fig. 4. Notation for the one-dimensional problem.
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We discretize the jump conditions to second order accuracy by

(1 − α)u0 + αu1 = (1 − α)w0 + αw1,(25)

Dx
+u0 + h

(
α− 1

2

)
Dx

+D
x
−u0 = c2

(
Dx

+w0 + h

(
α− 1

2

)
Dx

+D
x
−w1

)
.(26)

By using (22) and (23), we can write (25), (26) as

αu1 + (α− 1)w0 = (α− 1)u0 + αw1,

u1 + c2w0 = u0 + c2w1 + h2

(
α− 1

2

)(
d2w1

dt2
− d2u0

dt2

)
.

Solving for w0 and u1 yields

w0 =
1

1 − α(1 − c2)

(
u0 − α(1 − c2)w1 + h2α

(
α− 1

2

)(
d2w1

dt2
− d2u0

dt2

))
,(27)

u1 =
1

1 − α(1 − c2)

(
c2w1 + (1 − α)(1 − c2)u0(28)

+h2(1 − α)

(
α− 1

2

)(
d2w1

dt2
− d2u0

dt2

))
.

By using (27)–(28) we can eliminate w0, u1 from (22)–(23) and obtain

b11
d2u0

dt2
+ b12

d2w1

dt2
=

1

h2
(a10u−1 + a11u0 + a12w1) ,

b21
d2u0

dt2
+ b22

d2w1

dt2
=

1

h2
(a21u0 + a22w1 + a23w2) .

Here,

b11 = 1 − α(1 − c2) +

(
α− 1

2

)
(1 − α), b12 = −

(
α− 1

2

)
(1 − α),(29)

b21 = α

(
α− 1

2

)
, b22 =

1

c2

(
1 − α(1 − c2) − c2α

(
α− 1

2

))
(30)

and

a10 = 1 − α(1 − c2), a11 = −2 + (1 + α)(1 − c2), a12 = c2,(31)

a21 = 1, a22 = −2 + α(1 − c2), a23 = 1 − α(1 − c2).(32)
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We can write the semidiscrete problem in matrix form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

. . .

0 1 0

0 b11 b12

b21 b22 0

0 1/c2 0

. . .

0 1/c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d2

dt2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u−N+1

...

u−1

u0

w1

w2

...

wN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1

. . .

1 −2 1

a10 a11 a12

a21 a22 a23

1 −2 1

. . .

1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u−N+1

...

u−1

u0

w1

w2

...

wN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which we write as

Bwtt =
1

h2
Aw.(33)

By (31), (32), the matrix A is negative diagonally dominant and the off-diagonal
elements are positive. Therefore it can be symmetrized by a diagonal scaling D > 0,

w̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

d−2

d−1 0

d0

0 d1

d2

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

u−2

u−1

u0

w1

w2

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=: Dw,(34)

and (33) becomes

B̃w̃tt =
1

h2
Ãw̃, B̃ = DBD−1, Ã = DAD−1 = Ã∗ < 0.(35)
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Without restriction we can assume that d0 = 1. Then d1 is determined by the condition
that ⎛

⎝ 1 0

0 d1

⎞
⎠

⎛
⎝ a11 a12

a21 a22

⎞
⎠

⎛
⎝ 1 0

0 d−1
1

⎞
⎠ =

⎛
⎝ a11 d−1

1 a12

d1a21 a22

⎞
⎠

is symmetric. By (31), (32), d1 =
√
a12/a21 = c. The corresponding 2× 2 submatrix

of B becomes

B̃1 =

⎛
⎝ 1 0

0 d1

⎞
⎠

⎛
⎝ b11 b12

b21 b22

⎞
⎠

⎛
⎝ 1 0

0 d−1
1

⎞
⎠ =

⎛
⎝ b11 b12/c

cb21 b22

⎞
⎠ .

We want to show that

1

2
(B̃ + B̃∗) > 0, B̃ = DBD−1.(36)

We need to prove this only for B̃1, since the remaining part of B̃ is identical to B, i.e.,
diagonal with positive elements. By (29), (30),

b11 = (1 − α)

(
1

2
+ α

)
+ αc2 > 0,(37)

b22 =
1

c2

(
1 − α + αc2

(
3

2
− α

))
> 0.(38)

The characteristic equation, det(1
2 (B̃1 + B̃∗

1) − μI) = 0, is

μ2 − μ(b11 + b22) + b11b22 −
1

4

(
b12
c

+ cb21

)2

= 0,

with discriminant

Δ = (b11 + b22)
2 − 4

(
b11b22 −

1

4

(
b12
c

+ cb21

)2
)

= (b11 − b22)
2 +

(
b12
c

+ cb21

)2

> 0.

The roots are

μ1,2 =
1

2

(
b11 + b22 ±

√
Δ
)
.

Since b11 + b22 > 0 and Δ > 0, both roots are real and positive if (b11 + b22)
2 > Δ.

We have

1

4

(
(b11 + b22)

2 − Δ
)

= b11b22 −
1

4

(
b12
c

+ cb21

)2

=
1

c2

(
(1 − α)

(
1

2
+ α

)
+ αc2

)(
1 − α + αc2

(
3

2
− α

))
−

(
α− 1

2

)2
4

(1 − α− αc2)2

=
1

c2

(
(1 − α)2

(
1

2
+ α

)
−

(α− 1
2 )2

4
(1 − α)2

)
> 0.
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Thus 1
2 (B̃ + B̃∗) is positive definite.

If α = 1
2 , then, by (29)–(30), b12 = b21 = 0 and B̃ = B̃∗ > 0. Since Ã = Ã∗ < 0,

there is an energy estimate and the method is stable.
If α �= 1

2 , then we make an eigenvector expansion. w̃ = eλtw̃0 is a solution of (35)
if λ, w̃0 are solutions of the eigenvalue problem(

λ2B̃ − 1

h2
Ã
)

w̃0 = 0.(39)

If we can prove that the eigenvalues λ2 are real, distinct, and negative, then there are
no growing modes and the approximation is stable.

If λ2 is real, then w̃0 is also real and the symmetry of Ã gives us

λ2〈w̃0, B̃w̃0〉 =
λ2

2
〈w̃0, (B̃ + B̃∗)w̃0〉 =

1

h2
〈w̃0, Ãw̃0〉,

where 〈u,v〉 denotes the usual L2 inner product. Since Ã < 0 and B̃ + B̃∗ > 0, it
follows that λ2 < 0.

We need the following lemma.
Lemma 1. Consider a tridiagonal system of equations⎛

⎜⎜⎜⎜⎜⎜⎝

d1 e1 0 · · · · · · · · · 0

l2 d2 e2 0 · · · · · · 0

0 l3 d3 e3 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . 0 ln dn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

z1

...

zn

⎞
⎟⎟⎟⎠ = 0,(40)

and assume that θ = 0 is an eigenvalue. If all ej �= 0 or all lj �= 0, then θ is a simple
eigenvalue (i.e., the invariant subspace has dimension one).

Proof. Assume that all ej �= 0 and θ is not a simple eigenvalue. Since the invariant
subspace corresponding to θ has dimension larger than one, we can construct an
eigenvector with z1 = 0. But then z2 = z3 = · · · = zn = 0, which is a contradiction.
Correspondingly, if all lj �= 0, then there is a solution with zn = 0 which again implies
that zn−1 = zn−2 = · · · = z1 = 0. This proves the lemma.

We shall now prove that the eigenvalues λ2 of (39) are simple for all 0 < α < 1. λ2

is an eigenvalue of (39) if zero is an eigenvalue of the tridiagonal matrix Q = h2λ2B̃−Ã.
The conditions of Lemma 1 are violated if there is some value of α where at least
one element on the subdiagonal of Q is zero and one element on the superdiagonal
of Q is zero. The only off-diagonal elements of B̃ are b̃12 and b̃21, D > 0, and
a10 = a23 = (1−α)+αc2 > 0 for all 0 ≤ α ≤ 1. Hence, Lemma 1 can only be violated
if

h2λ2b̃12 − ã12 = 0 and h2λ2b̃21 − ã21 = 0.(41)

By (29), (30), (31), and (32) we can write (41) as

−h2λ2

(
α− 1

2

)
(1 − α) − c2 = 0, h2λ2α

(
α− 1

2

)
− 1 = 0,

i.e.,

α− 1

α
= c2,
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which is a contradiction because c2 > 0, but the left-hand side is negative for 0 < α <
1. Thus the eigenvalues λ2 of (39) are simple. They are also real because they are
solutions of the characteristic equation and smooth functions of α. For α = 1

2 they
are real. Therefore they are real for all values of α because they can only become
complex at some value α = α0 if there is an eigenvalue which is not simple. This
completes the proof of the following theorem.

Theorem 1. The eigenvalues λ2 of (39) are real, distinct, and negative. There-
fore the semidiscrete problem (22), (23) subject to the boundary conditions (24) and
the jump conditions (25), (26) is stable.

3. The modified equation. Instead of the complete proof of the last section
(which is quite complicated), we shall now use modified equations and show stability
for the low and intermediate frequencies. Note that this analysis does not provide
any information about the highest frequencies and therefore does not prove stability
of the scheme. As we shall see in section 6, numerical calculations show that our
ATA-dissipation takes care of any instabilities caused by the highest frequencies in
our scheme. We discuss the modified equation technique here because in the multi-
dimensional case, the use of modified equations is the only way to obtain stability
information. Such an analysis can be found in [2]. Since in [2] we neglected the
truncation error in the normal direction, it is important that the restriction of the
approximation to one dimension is completely stable.

Even though extensive numerical experiments with our two-dimensional scheme
indicate that it is stable with ATA-dissipation, we note that there might be other
schemes with stable modified equations which are unstable.

We introduce the dependent variable

v(x, t) = u(−x, t),

assume xmin → ∞, xmax → ∞, and write (17), (18) as a half-plane problem for the
system ⎛

⎝ v

w

⎞
⎠

tt

=

⎛
⎝ 1 0

0 c2

⎞
⎠

⎛
⎝ v

w

⎞
⎠

xx

, 0 ≤ x < ∞, t ≥ 0,(42)

with the modified jump conditions

v(0, t) + h2βvxx(0, t) = w(0, t) + h2βwxx(0, t),(43)

vx(0, t) + h2γvxxx(0, t) = −c2
(
wx(0, t) + h2γwxxx(0, t)

)
.(44)

We obtain (43) and (44) from (25) and (26) by adding the leading truncation error
term. A simple but tedious calculation shows that

β =
(1 − α)α

2
, γ =

−2 + 6α− 3α2

6
.

We use mode analysis to discuss stability. The general solutions of type⎛
⎝ v(x, t)

w(x, t)

⎞
⎠ = est

⎛
⎝ ṽ(x, s)

w̃(x, s)

⎞
⎠ , Re(s) ≥ 0,
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where (ṽ(x, s), w̃(x, s)) are bounded, are given by

v(x, t) = este−sxv0, w(x, t) = este−(s/c)xw0.(45)

Introducing (45) into the boundary conditions (43), (44) gives us

(1 + h2βs2)v0 − (1 + h2βs2)w0 = 0,

(1 + h2γs2)v0 + c2(1 + h2γs2)w0 = 0.

Thus, nontrivial solutions exist if and only if

−(1 + h2βs2)(1 + h2γs2) = 0.

Hence, instabilities can only be present for s = O(1/h), i.e., for high frequencies.
(However, the proof in the previous section shows that this cannot happen.)

4. Solvability of the two-dimensional discrete jump conditions. Let the
2 × 2 matrix on the left-hand side of (16) be P . The linear system has a unique
solution if detP �= 0. We have

detP = gD0 (ξΓ)gN0 (ξI − ξΓ)/ρII + gD0 (ξI − ξΓ)gN0 (ξΓ)/ρI .

The coefficients in the Dirichlet formula (8) are

gD0 (ξ) =
(ξI − ξ)(2ξI − ξ)

2ξ2
I

+ δ, gDI (ξ) =
ξ(2ξI − ξ)

ξ2
I

− 2δ, gDII(ξ) =
ξ(ξ − ξI)

2ξ2
I

+ δ,

where δ ≈ 0.25 is a constant that removes the small-cell time step restriction while
preserving the second order accuracy; see [3]. The coefficients in the Neumann formula
(9) are (see [2])

gN0 (ξ) =
3ξI − 2ξ

2ξ2
I

, gNI (ξ) =
2ξ − 2ξI

ξ2
I

, gNII(ξ) =
ξI − 2ξ

2ξ2
I

.

Since 0 ≤ ξΓ ≤ ξI and δ > 0,

0 < δ ≤ gD0 ≤ 1 + δ, 0 <
1

2ξI
≤ gN0 ≤ 3

2ξI
.

Hence

δ

2ξI

(
1

ρI
+

1

ρII

)
≤ detP ≤ 3(1 + δ)

2ξI

(
1

ρI
+

1

ρII

)
.

For all possible directions of the normal, h ≤ ξI ≤
√

2h, and we conclude that

detP ≥ C > 0, C =
δ

2
√

2h

(
1

ρI
+

1

ρII

)
.

The fact that the lower bound of detP is proportional to δ shows that the δ-term
is essential for the solvability of the discrete jump conditions for general locations of
the interface relative to the grid. The δ-term was originally designed for Dirichlet
boundary conditions to remove the small-cell time step restriction (cf. [3]), and it also
serves that purpose here.
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5. Time-integration and AT A-dissipation. The discretized jump conditions
(16) can in principle be used to eliminate all ghost points from the discrete approxima-
tion of the Laplacians of u and w (7). Since the jump conditions couple the solutions
on both sides of the interface, the matrix form of the discrete Laplacian becomes

Δhu(XI , tn) = A11u
n + A12w

n,

Δhw(XII , tn) = A21u
n + A22w

n,
A =

⎛
⎝ A11 A12

A21 A22

⎞
⎠ .

Here, XI and XII are vectors of all grid point coordinates inside ΩI and ΩII , respec-
tively, and u and w are the discrete solutions at those grid points. If all eigenvalues
of A are distinct, real, and negative, one can show that the scheme⎛

⎝ ρI(u
n+1 − 2un + un−1)/δ2

t

ρII(w
n+1 − 2wn + wn−1)/δ2

t

⎞
⎠ = A

⎛
⎝ un

wn

⎞
⎠ + F (tn)(46)

is stable for sufficiently small time steps δt [1]. However, the embedded boundary
approximation of the jump conditions breaks the symmetry of the matrix A so it is
not possible to guarantee this property. In fact, numerical examples (see section 6)
indicate that the above scheme suffers from a mild instability.

In the previous embedded boundary methods for the wave equation subject to
Neumann [2] and Dirichlet [3] boundary conditions, we damped the instability by
adding a small fourth order term of the type h3ATA(ut,wt)

T to the right-hand side
of (46). While this technique turned out to work very well in practice for the Neumann
and Dirichlet problems, it is not directly amendable to the current problem because
the matrix A couples the solutions across the interface. Consequently, it becomes com-
plicated to evaluate AT on a solution vector without explicitly forming the matrix A.

It is not difficult to modify the previous dissipation technique to work with the
jump conditions. We first describe the idea for the continuous problem. For the wave
equation (1)–(2) with jump conditions (5)–(6), we can evaluate the normal derivative
of the solutions on either side of the interface as functions of time,

∂u

∂n
(x, t) =: fI(x, t), x ∈ Γ, t ≥ 0,(47)

∂w

∂n
(x, t) =: fII(x, t), x ∈ Γ, t ≥ 0.(48)

Hence, once the continuous problem with jump conditions has been solved, we can in
principle recompute the same solution by solving two uncoupled Neumann problems:

ρIutt = Δu + F (x, t), x ∈ ΩI , t ≥ 0,

∂u

∂n
(x, t) = fI(x, t), x ∈ Γ, t ≥ 0,(49)

u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ ΩI ,

and

ρIIwtt = Δw + F (x, t), x ∈ ΩII , t ≥ 0,

∂w

∂n
(x, t) = fII(x, t), x ∈ Γ, t ≥ 0,(50)

w(x, 0) = W0(x), wt(x, 0) = W1(x), x ∈ ΩII .
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Our basic idea is to use the stabilized embedded boundary scheme for the Neumann
problem described in [2], where the forcing functions fI and fII are computed on the
fly during the time evolution.

For conciseness, we describe only the details for the Neumann problem (49), which
is discretized on the same Cartesian grid as above, leading to the same set of ghost
points GI where the discrete boundary conditions are applied,

BN
i,ju

n = fI(x
Γ
i,j , tn), (i, j) ∈ GI .(51)

The formula (7) for discretizing the Laplacian of u is the same as before, but since the
Neumann problem for u is decoupled from w, we now get the matrix representation

Δhu(XI , tn) = AIu
n + bn

I ,(52)

after all ghost points have been eliminated from (7). The vector bI contains the
discrete boundary forcing function corresponding to the forcing function fI(x

Γ, t)
and is only nonzero at grid points just inside the boundary; see [2] for details.

The stabilized scheme for the Neumann problem is

ρI(u
n+1 − 2un + un−1)/δ2

t = AIu
n + bn + F (tn)(53)

− ε
h3

δt
AT

I

(
AIu

n + bn −AIu
n−1 − bn−1

)
,

where ε > 0 is a small constant. Numerical experiments indicate that ε = O(10−3)
is sufficient to allow for very long time-integrations (106 time steps or more). The
scheme (54) can be recast into an equivalent form that makes it easier to generalize to
handle the jump conditions. Let us define an extended solution vector ū that includes
the solution at all interior points as well as the ghost points. Given ū, all values are
defined to evaluate the discrete Laplacian Δhui,j (7) at all points xi,j ∈ ΩI . We write
the discrete Laplacian at all these points as Δhū and arrive at the equivalent method:

1. Given un, define ūn by assigning all ghost points to satisfy the discretized
Neumann boundary condition (51).

2. Update all interior points xi,j ∈ ΩI by

ρI(u
n+1 − 2un + un−1)/δ2

t = Δhūn + F (tn)(54)

− ε
h3

δt
AT

I

(
Δhūn − Δhūn−1

)
.

Using this formulation shows that the matrix AI is only needed to evaluate the dissi-
pation term, and only for the matrix-vector product AT

I y, where y = Δhūn−Δhūn−1.
Note that the boundary forcing fI(x

Γ, t) influences only the ghost point values and
has no bearing on AT

I .
To satisfy the discrete jump conditions (14)–(15), it appears that we must first

calculate a corresponding value of fI to use in (51). Given un, this can be achieved
by first calculating the values at all ghost points GI by solving the 2×2 linear system
(16). We can then use the embedded boundary formula (51) to evaluate fI . However,
it is a trivial exercise to see that enforcing (51) with this fI results in the same ghost
point values as those we started with. Hence, it is not necessary to calculate fI , and
we can simply replace the inhomogeneous Neumann condition by the discrete jump
conditions (16). The same principle applies to the Neumann problem in ΩII and we
arrive at the damped scheme for the problem with jump conditions:
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1. Given un and wn, define ūn by assigning all ghost points ui,j to satisfy the
discrete jump conditions along normals going through (i, j) ∈ GI ,

BD
i,ju

n = V D
i,jw

n,

1

ρI
BN

i,ju
n = − 1

ρII
V N
i,jw

n.

2. Given un and wn, define w̄n by assigning all ghost points wi,j to satisfy the
discrete jump conditions along normals going through (i, j) ∈ GII ,

BD
i,jw

n = V D
i,ju

n,

1

ρII
BN

i,jw
n = − 1

ρI
V N
i,ju

n.

3. Update all interior points xi,j ∈ ΩI by

ρI(u
n+1 − 2un + un−1)/δ2

t = Δhūn + F (tn) − ε
h3

δt
AT

I

(
Δhūn − Δhūn−1

)
.

4. Update all interior points xi,j ∈ ΩII by

ρII(w
n+1 − 2wn + wn−1)/δ2

t = Δhw̄n + F (tn) − ε
h3

δt
AT

II

(
Δhw̄n − Δhw̄n−1

)
.

Here, AII denotes the matrix representation of the discrete Laplacian subject to
discrete Neumann conditions in ΩII , and w̄n is the extended solution vector holding
the solution at all interior grid points of ΩII as well as at the ghost points GII . Note
that the matrices AI and AII do not need to be formed explicitly; cf. [2].

The wave equation subject to jump condition is equivalent to the two uncoupled
wave equations subject to Neumann boundary conditions (49)–(50), and the theory
in [2] shows that the h3ATAut-dissipation term inflicts an error which is O(h2) for
these problems. Hence, we conclude that the dissipation term also inflicts an O(h2)
error for the wave equation with jump conditions.

6. Numerical examples. To test the accuracy of the numerical scheme, we
begin by considering electromagnetic scattering of a plane incident wave by a dielectric
circular cylinder of radius R. In this section, we follow the notation of electromagnetics
and let κe ≥ 1 denote the relative permittivity of the dielectric material but assume
the same permeability inside and outside the dielectric. By assuming TEz polarization
and scaling time to obtain unit speed of light in vacuum, we arrive at the following
problem for the z-component of the magnetic field:

∂2H(z)

∂t2
= ΔH(z), R2 < x2 + y2 < ∞,(55)

∂2H(z)

∂t2
=

1

κe
ΔH(z), x2 + y2 < R2,(56)

subject to the jump conditions

[
H(z)

]
= 0,

[
1

κe

∂H(z)

∂n

]
= 0, x2 + y2 = R2.

Here, ∂/∂n denotes the normal derivative on the boundary of the dielectric cylinder
and κe = 1 outside the cylinder. There is an analytical solution of this problem due
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Table 1

Max error at time T = 10.0 for the case κe = 2 inside the dielectric cylinder (uerr) and outside
of it (werr), with ATA-dissipation (ε = 10−3) and without dissipation.

N h uerr uerr, ATA werr werr, ATA

201 1.5 × 10−2 4.50 × 10−2 4.47 × 10−2 2.07 × 10−2 2.09 × 10−2

401 7.5 × 10−3 1.12 × 10−2 1.11 × 10−2 5.44 × 10−3 5.49 × 10−3

801 3.75 × 10−3 2.81 × 10−3 2.80 × 10−3 1.30 × 10−3 1.31 × 10−3

Table 2

Max error at time T = 200.0 for the case κe = 2 inside the dielectric cylinder (uerr) and
outside of it (werr). The coefficient in the ATA-dissipation was ε = 10−3.

N h Time steps uerr, ATA werr, ATA

201 1.5 × 10−2 26, 666 3.38 × 10−2 3.57 × 10−2

401 7.5 × 10−3 53, 333 8.42 × 10−3 7.82 × 10−3

801 3.75 × 10−3 106, 666 2.31 × 10−3 1.97 × 10−3

to Mie (see, for example, [28, p. 667]). Let the incident wave have angular frequency
ω and wave number k:

H
(z)
I (x, y, t) = ei(kx−ωt).

In polar coordinates (ρ, θ), the incident, scattered, and transmitted fields are

H
(z)
I = eiωt

∞∑
n=−∞

i−nJn(kρ)einθ, ρ > R,(57)

H
(z)
S = eiωt

∞∑
n=−∞

i−nanH
(2)
n (kρ)einθ, ρ > R,(58)

H
(z)
D = eiωt

∞∑
n=−∞

i−nbnJn(mkρ)einθ, ρ < R,(59)

where m =
√
κe, Jn is the Bessel function of the first kind of order n, and H(2) is the

Hankel function of the second kind of order n (corresponding to waves propagating
outward). The coefficients an and bn are given in [28, p. 667].

The scattering problem was solved numerically for the case R = 1, κe = 2, ω =
k = 2π. The computational domain was the square −1.5 ≤ x ≤ 1.5, −1.5 ≤ y ≤ 1.5,
and the exact solution was imposed as a Dirichlet boundary condition on the outer
boundary. The exact solution was also imposed as initial condition. The error in the
numerical solution measured in max norm over all internal grid points was evaluated
at times T = 10.0 and T = 200.0; see Tables 1 and 2, respectively. Note that the
error is second order accurate at both times and of the same order of magnitude for
the same grid sizes. Studying the error as function of time (see Figure 5) reveals
that the ATA-dissipation is only necessary for long-time computations. Furthermore,
there is no noticable growth of the error after long times when the dissipation is used,
indicating that the damping is very weak.

As a second test, we consider the same geometry as above but reduce the wave
speed inside the cylinder by setting κe = 10. Hence the wave length inside the cylinder
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Fig. 5. The max error inside the dielectric cylinder (uerr) as function of time for the case
κe = 2, for different grid sizes, with and without ATA-dissipation.

Table 3

Max error at time T = 10.0 for the case κe = 10 inside the dielectric cylinder (uerr) and
outside of it (werr), with ATA-dissipation (ε = 10−3) and without dissipation.

N h uerr uerr, ATA werr werr, ATA

401 7.5 × 10−3 2.17 × 10−1 2.16 × 10−1 6.52 × 10−2 6.48 × 10−2

801 3.75 × 10−3 5.48 × 10−2 5.47 × 10−2 1.62 × 10−2 1.61 × 10−2

will be a factor
√

10 smaller than outside of it. For this reason, a smaller grid size
is needed to resolve the solution and the grid with N = 201 is no longer adequate.
The errors in the solution at times T = 10 and T = 200 are given in Tables 3 and 4,
respectively. Even though the errors are larger in this case, they are still second order
accurate at both times and of the same order of magnitude for the same grid sizes.
The solution at time T = 10 is shown in Figure 6.

To illustrate that the method generalizes to many subdomains, we consider the
scattering of a plane incoming wave on a media with different wave speeds inside each
bubble; see Figure 7. This calculation was started from homogeneous initial data and
driven on the left boundary by the data u(−2, y, t) = sin(8πt). The remaining outer
boundaries had homogeneous Neumann conditions. The solution is shown at time
T = 5. The ambient media has unit wave speed, so this time corresponds closely to
the first arrival of the solution at the right boundary. Note that the speed inside the
top bubble (which breaks the otherwise symmetrical configuration) equals the unit
speed in the ambient media, but the jump conditions are enforced across its interface.
Nevertheless, the contour lines of the numerical solution display a high degree of
symmetry about the y = 0 axis, indicating that the truncation errors in the jump
conditions are very small.

To further illustrate the flexibility of the method, we calculate the scattering
around an irregular shape described by a periodic cubic spline curve; see Figure 8.
Note that the interface has both concave and convex parts. The wave speed inside
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Table 4

Max error at time T = 200.0 for the case κe = 10 inside the dielectric cylinder (uerr) and
outside of it (werr). The coefficient in the ATA-dissipation was ε = 10−3.

N h Time steps uerr, ATA werr, ATA

401 7.5 × 10−3 53, 333 2.03 × 10−1 7.16 × 10−2

801 3.75 × 10−3 106, 666 5.81 × 10−2 1.75 × 10−2
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Fig. 6. The Mie scattering solution at time T = 10 with κe = 10. Note the focusing of the
wave inside the cylinder.
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Fig. 7. An incoming planar wave scattered by several bubbles with both larger and smaller wave
speed compared to the ambient media.
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Fig. 8. An incoming planar wave scattered by an irregular shape described by a periodic spline
curve. The wave speed inside the curve was a factor

√
10 smaller than on the outside.

the shape was 1/
√

10 and the ambient wave speed was one. As in the previous
example, the calculation was started from homogeneous initial conditions and driven
on the left boundary by the data u(−0.7, y, t) = sin(8πt). Homogeneous Neumann
conditions were imposed on the remaining boundaries. The solution is shown at time
T = 3.3, which approximately corresponds to when the initial wave front reaches the
right boundary.

7. Conclusions. We have developed a second order accurate embedded bound-
ary method for the two-dimensional wave equation with discontinuous coefficients.
The current method uses the same grid size throughout the computational domain,
but as the jump in wave speed across the interface gets larger, it becomes obvious
that this approach either overresolves the solution on one side of the interface or un-
derresolves it on the other side. It would therefore be desirable to extend the method
to handle different mesh sizes on different sides of the interface; some initial steps
have been taken in this direction. We also expect to generalize the method to handle
the more complicated jump conditions associated with the elastic wave equation with
discontinuous coefficients.
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