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A SECOND ORDER ACCURATE EMBEDDED BOUNDARY
METHOD FOR THE WAVE EQUATION WITH DIRICHLET DATA∗

HEINZ-OTTO KREISS† AND N. ANDERS PETERSSON‡

Abstract. The accuracy of Cartesian embedded boundary methods for the second order wave
equation in general two-dimensional domains subject to Dirichlet boundary conditions is analyzed.
Based on the analysis, we develop a numerical method where both the solution and its gradient are
second order accurate. We avoid the small-cell stiffness problem without sacrificing the second order
accuracy by adding a small artificial term to the Dirichlet boundary condition. Long-time stability of
the method is obtained by adding a small fourth order dissipative term. Several numerical examples
are provided to demonstrate the accuracy and stability of the method. The method is also used
to solve the two-dimensional TMz problem for Maxwell’s equations posed as a second order wave
equation for the electric field coupled to ordinary differential equations for the magnetic field.
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1. Introduction. Consider the Dirichlet problem for the second order wave
equation in a two-dimensional domain Ω with boundary Γ:

utt = Δu + F (x, t), x ∈ Ω, t ≥ 0,(1)

u(x, t) = f(x, t), x ∈ Γ, t ≥ 0,(2)

u(x, 0) = u0(x), x ∈ Ω,(3)

ut(x, 0) = u1(x), x ∈ Ω.(4)

In this paper we continue the approach started in [1] and [2] and develop a numerical
method that directly discretizes the second order wave equation. This approach is mo-
tivated by wave propagation problems from applications such as seismology, acoustics,
and general relativity, where the underlying differential equations are systems of sec-
ond order hyperbolic partial differential equations. For every second order hyperbolic
system, there is an equivalent but larger first order hyperbolic system. For example,
two-dimensional acoustic wave propagation is governed by a scalar second order wave
equation for the pressure or by a system of three first order hyperbolic equations for
the two velocity components and the pressure. Hence, the obvious advantage of the
second order formulation is that the size of the system is reduced. Both continuous
formulations need one boundary condition to form a well-posed initial-boundary value
problem, which means that two extrapolation boundary conditions must be supplied
to close the discretized first order system. This can be done, but one has to be careful
not to introduce instabilities [3]. Furthermore, if the solution is not properly resolved
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Fig. 1. The points used for discretizing the Dirichlet boundary condition for the cases of
horizontal interpolation (left) and vertical interpolation (right).

on the grid, the discretized first order system allows for spurious waves that travel
in the wrong direction [4]. The latter two problems can be circumvented by using a
staggered grid (which amounts to nothing else but solving the original second order
problem in disguise). However, when the boundary is not aligned with the grid, it
is hard to find an accurate and stable staggered grid discretization of the boundary
conditions. In contrast, the second order formulation does not need extrapolation
boundary conditions and, as we have shown in [1], a node based discretization of the
second order formulation avoids the difficulties with spurious waves traveling in the
wrong direction. The subject of the present paper is to derive a stable second order
accurate discretization of the wave equation subject to Dirichlet boundary conditions
on boundaries that are not aligned with the grid.

A Cartesian embedded boundary approach will be used to solve the above problem
numerically. We cover the domain Ω by a regular Cartesian grid with points xi,j =
(ih, jh)T , where i, j are integers and h is the grid size. The boundary is allowed to
intersect the grid in an arbitrary manner; see Figure 1. Centered finite differences
are used to discretize the wave equation in both space and time and the boundary
condition is approximated using straightforward interpolation. However, the details
of how the boundary condition is discretized are important since they determine the
accuracy and stability of the numerical method. In the current paper, we discretize
the Dirichlet boundary condition such that both the solution and its gradient become
second order accurate. Furthermore, we add an artificial term to the discrete boundary
condition that removes the stiffness due to small cells cut by the boundary without
sacrificing the second order accuracy of the method. As a result, we can use an explicit
time-integration method where the time step essentially equals that of a periodic
domain. Stability of the method is obtained by using a small fourth order stabilizing
term of the form h3ATAut, where A is the matrix representation of the discrete
Laplace operator satisfying the discrete boundary condition [2].

The embedded boundary technique for discretizing partial differential equations
dates back to the first order technique by Weller and Shortley [5] and the higher or-
der generalizations of Collatz [6]. More recently, several embedded boundary methods
have been presented for various types of partial differential equations. For example,
Pember et al. [7] used a Cartesian grid method for solving the time-dependent equa-
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tions of gas dynamics. For the one- and two-dimensional Euler equations, Berger,
Helzel, and LeVeque [8] developed a Cartesian “h-box” method which aims at avoiding
the small-cell time step restriction without sacrificing accuracy. Zhang and LeVeque
[9] solved the acoustic wave equation with discontinuous coefficients written as a first
order system. A staggered grid method was used by Ditkowski, Dridi, and Hesthaven
[10] for solving Maxwell’s equations on a Cartesian grid. The methods described in
these papers all solve first order systems (in time). For Poisson’s equation with Dirich-
let boundary conditions, Johansen and Colella [11] derived an embedded boundary
technique based on the finite volume method combined with multigrid. More recently,
Li and Greengard [12] developed a method for the scalar second order wave equation
in two space dimensions, which combines a free-space Green’s function evolution for-
mula with an integral equation technique to satisfy Dirichlet or Neumann boundary
conditions.

We have previously developed a Cartesian embedded boundary method for solv-
ing the wave equation subject to Dirichlet conditions [1]. That numerical method
produces a solution that is second order accurate in max-norm, but the gradient of
the solution is only first order accurate. Having accurate gradients is important in
applications such as the elastic wave equation, where the stresses depend on the gra-
dient of the displacement and the boundary condition on a free surface is expressed in
terms of the stresses. As a step toward solving the elastic wave equation, we will here
consider Maxwell’s equations written as a second order wave equation for the electric
field. In this application it is important to compute the gradient of the electric field
to second order accuracy, since the time derivative of the magnetic field depends on
the curl of the electric field.

There are two reasons why difference methods that use the embedded boundary
discretization technique have problems calculating gradients with full accuracy:

1. Even if the initial data are fully compatible with the boundary condition for
the analytic problem, the spatial discretization can destroy the compatibility
on the truncation error level, which can degrade the rate of convergence for
the gradient. This problem occurs already in one space dimension, and in
section 2 we will discuss how it can be avoided by using a “smooth start”
procedure, where we change variables

u(x, t) = ũ(x, t) + (u0(x) + tu1(x))e−t2(5)

and numerically solve the problem for ũ. Since the new variable ũ satisfies a
modified wave equation subject to homogeneous initial conditions, there will
be no incompatibilities on the truncation error level for the solution or its
first time derivative.

2. Because the boundary is embedded in a regular Cartesian grid, the trunca-
tion error in the boundary condition can oscillate wildly between consecutive
grid points along the boundary. This problem occurs in two or more space
dimensions and can again degrade the rate of convergence for the gradient. In
section 3, we first analyze this problem for Poisson’s equation and then show
that the wave equation behaves in the same way as long as the truncation
error is smooth in time and compatible with the initial conditions. The anal-
ysis shows that due to the highly oscillatory truncation error, the Dirichlet
boundary condition must be discretized using a third order accurate formula
to obtain a second order accurate gradient of the solution. The analysis also
shows that a second order truncation error that varies smoothly along the
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boundary also results in a second order accurate gradient.
Guided by these results, we develop a new Cartesian embedded boundary method

for the Dirichlet problem which we outline now. Let vi,j(t) denote the semidiscrete
approximation of u(xi, yj , t). A second order approximation of the Laplacian of u is
given by

Δhvi,j =:
1

h2
(vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j).(6)

To be able to evaluate Δhvi,j at all grid points inside Ω, we use ghost points just
outside the domain; see Figure 1. Let xI , xII be the intersections between the normal
going through xi,j and the grid lines y = yj+1 and y = yj+2, respectively. Denote
by ξI , ξII = 2ξI the distances between xi,j and (xI , yj+1), (xII , yj+2), respectively.
To aid in the approximation of the Dirichlet condition, we construct a Lagrange
interpolant between three points along the normal: (0, vi,j), (ξI , vI), (ξII , vII),

Lv =: g0(ξΓ)vi,j + gI(ξΓ)vI + gII(ξΓ)vII ,(7)

where the coefficients are given by

g0(ξ) =
(ξI − ξ)(2ξI − ξ)

2ξ2
I

, gI(ξ) =
ξ(2ξI − ξ)

ξ2
I

, gII(ξ) =
ξ(ξ − ξI)

2ξ2
I

.(8)

To approximate vI and vII , we interpolate along the horizontal grid lines yj+1 and
yj+2:

vI = d1vi,j+1 + d2vi+1,j+1 + d3vi+2,j+1,(9)

vII = d4vi,j+2 + d5vi+1,j+2 + d6vi+2,j+2,(10)

where dk = O(1) are the quadratic Lagrange interpolation coefficients. The inter-
polant Lu(t) is a third order approximation of the boundary value, i.e., Lu(t) =
u(xΓ

i,j , t) +O(h3), where xΓ
i,j is the intersection point between the boundary and the

normal going through the ghost point xi,j .
The interpolation formulas for vI and vII , (9)–(10), hold when the angle θ be-

tween the normal and the x-axis satisfies π/4 ≤ θ ≤ π/2. When 0 ≤ θ ≤ π/4, the
horizontal interpolations are replaced by corresponding interpolations in the vertical
direction; see Figure 1. Despite the sudden switching between horizontal and verti-
cal interpolation at θ = π/4, the interpolation formulas for vI and vII are Lipschitz
continuous in θ. Approaching the limit from above, the coefficients in the horizontal
interpolation formulas (9)–(10) tend to d2 = d6 = 1, d1 = d3 = d4 = d5 = 0. Geo-
metrically, this corresponds to the normal intersecting the mesh along the diagonal,
so vI = vi+1,j+1 and vII = vi+2,j+2. The same limit is found with the corresponding
vertical interpolation formulas as θ → π/4 from below. The Lipschitz continuity also
holds at θ = π/2, where the horizontal interpolation switches from using points to the
right of the ghost point to using points to the left of it. At θ = π/2, both the left and
the right interpolation formulas use vI = vi,j+1 and vII = vi,j+2. The same argument
shows Lipschitz continuity at θ = 0, where the vertical interpolation switches from
using points above the ghost point to using points below it. The formulas in the other
three quadrants are simply obtained by reflections in index space, leading to a total
of 8 different cases to treat all possible directions of the boundary.

When the normal is close to vertical (or horizontal), the boundary can intersect
the grid such that ξΓ is arbitrarily close to ξI ; i.e., g0(ξΓ) can be arbitrarily close to



WAVE EQUATION WITH DIRICHLET DATA 1145

zero. The limit ξΓ = ξI corresponds to vI being on the boundary and coinciding with
a grid point, in which case one could eliminate the ghost point from the computation
and simply use vI = f as a discrete boundary condition. This could be achieved for
one ghost point by shifting the mesh appropriately. But for a general two-dimensional
domain discretized on a fine grid, there can be thousands of ghost points and it is not
possible to move the mesh to ensure that ξΓ stays bounded away from ξI for all ghost
points simultaneously. Hence, it is important that the discretization of the boundary
condition works for arbitrarily small g0(ξΓ).

If (7) were used to approximate the boundary condition, i.e., Lv(t) = f(xΓ
i,j , t),

we would need to divide by g0(ξΓ) to solve for the ghost point value using

vi,j =
1

g0(ξΓ)

(
f(xΓ

i,j , t) − gI(ξΓ)vI − gII(ξΓ)vII
)
.(11)

The ghost point value is used to evaluate the discrete Laplacian (6), and as we demon-
strate for the one-dimensional case in Appendix A, (11) would make the time-stepping
of (1) very stiff as g0 → 0. This phenomenon is known as the small-cell stiffness prob-
lem. To mitigate the stiffness, we add an artificial term to the interpolant (7) and
instead consider

Bhv(t) =: g0(ξΓ)vi,j + gI(ξΓ)vI + gII(ξΓ)vII + γ(vi,j − 2vI + vII) = f(xΓ
i,j , t),(12)

where the constant γ > 0. The artificial term is an undivided second difference in the
normal direction, and thus it inflicts an O(h2) error in the boundary condition approx-
imation. When the direction of the normal changes smoothly along the boundary, the
error due to the artificial term also varies smoothly along the boundary. This is pre-
cisely the situation analyzed in section 3, since the truncation error in the boundary
condition is composed of a highly oscillatory O(h3) part and a smooth O(h2) compo-
nent. The accuracy of both the solution and its discrete gradient should therefore be
O(h2).

Because of the artificial term in the boundary condition, the coefficient in front
of the ghost point vi,j is bounded uniformly away from zero, since

γ ≤ g0(ξΓ) + γ < 1 + γ.

As a result, the small-cell stiffness problem is removed. By estimating the spectrum
for the one-dimensional wave equation, we find that the eigenvalue with the largest
magnitude is independent of small cells near the boundary when γ ≥ 0.25; see Ap-
pendix A. Numerical computations indicate that 0.2 ≤ γ ≤ 0.5 works well in practice;
i.e., it is big enough to allow the time step to be chosen independently of the small cells
near the boundary but small enough to prevent the artificial term from dominating
the error in the numerical solution.

We can use the boundary condition (12) to eliminate all ghost points in the
discrete Laplacian (6). For example, at the point (i, j + 1) in the left part of Figure 1
we get

(13) Δhvi,j+1 =
1

h2
(vi+1,j+1 + vi−1,j+1 + vi,j+2 − 4vi,j+1)

− (gI − 2γ)

h2(g0 + γ)
(d1vi,j+1 + d2vi+1,j+1 + d3vi+2,j+1)

− (gII + γ)

h2(g0 + γ)
(d4vi,j+2 + d5vi+1,j+2 + d6vi+2,j+2) +

f(xΓ
i,j , t)

h2(g0 + γ)
,
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assuming that (i, j) is the only nearest neighbor of (i, j + 1) that is outside of Ω.
(If additional points are outside, other formulas of the type (12) would be used to
eliminate those points as well.) The expression (13) defines the discrete boundary
forcing function b at point (i, j + 1):

bi,j+1(t) =
f(xΓ

i,j , t)

h2(g0 + γ)
.(14)

In the interior of Ω, i.e., for points xi,j where xi±1,j and xi,j±1 are all inside Ω,
bni,j = 0.

After all ghost points have been eliminated, the discrete approximation of the
Laplacian of u (for functions satisfying the boundary condition u = f(xΓ, t)) can be
written in matrix form

Δu(x, t) ≈ Av(t) + b(t).(15)

Here the array v contains the solution at all grid points inside Ω. Using this notation,
the semidiscrete approximation of (1)–(4) becomes

vtt = Av + b(t) + F (t), t ≥ 0,(16)

v(0) = u0(x), x ∈ Ω,(17)

vt(0) = u1(x), x ∈ Ω,(18)

where F i,j(t) = F (xi,j , t) for all xi,j ∈ Ω.
We discretize the second order time derivative in (16) using a centered finite

difference formula on the regular grid tn = nk, n = 0, 1, 2, . . . , where k > 0 is the
time step. Let vn = v(tn) and bn = b(tn). Because of the discretized form of the
Dirichlet boundary condition, the matrix A in (16) will not be symmetric. To avoid
the resulting mild instability which was analyzed for the Neumann problem in [2],
we use the discrete stabilization operator h3AT [A(vn − vn−1)/k + db/dt(tn)], which
was proposed in the same paper. Note the time derivative of the boundary forcing is
included within the brackets to make that expression a consistent approximation of
Δut, for functions satisfying the boundary condition ut = ft(x

Γ, t). Also note that the
discrete stabilization operator can be applied all the way up to the boundary. Away
from the boundary, it is equivalent to h3Δ2

h(vn − vn−1)/k, which is a very efficient
damping term for highly oscillatory instabilities. For the case with inhomogeneous
boundary conditions and internal forcing, the proposed scheme becomes

vn+1 − 2vn + vn−1

k2
= Avn + bn + F (tn) − αh3AT

(
(Avn −Avn−1)/k +

db

dt
(tn)

)
.

(19)

The numerical experiments in section 4 indicate that α = O(10−3) suffices to stabilize
the scheme for long time computations. We note that the sparse structure of A can
be used to efficiently evaluate both Av and ATv without the need to store the matrix
explicitly; see [2]. Also note that this scheme bears many similarities with our method
for the Neumann problem [2]. In particular, both methods use the same set of grid
points for discretizing the boundary condition and the same type of stabilization
term. Hence, the two methods can be combined in a straightforward manner to solve
problems with mixed Neumann–Dirichlet conditions.
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The remainder of the paper is organized as follows. The influence of incompati-
bilities between initial and boundary data on the truncation error level is analyzed in
section 2 and the effect of highly oscillatory truncation errors in the boundary con-
dition is studied in section 3. Two-dimensional numerical experiments are performed
in section 4. We first construct a smooth solution against which the error in the
numerical solution can be evaluated. The accuracy of the scheme and effects of the
smooth start technique are evaluated in section 4.1. In section 4.2 we test the method
by solving the TMz problem for Maxwell’s equations, i.e., the case when the electric
field only has a component in the z-direction and the magnetic field has no component
in the z-direction. The TMz problem can be formulated as a scalar wave equation
for the electric field in the (x, y) plane, subject to a Dirichlet boundary condition.
The wave equation for the electric field is coupled to ODEs for the magnetic field
that are integrated in time as the electric field is evolved. This is a good test of the
scheme, since the accuracy of the magnetic field is determined by the accuracy of the
curl of the electric field. Numerical experiments are performed for a circular domain
where the numerical solution is compared to an analytic solution, as well as for more
complex domains. Concluding remarks are presented in section 5.

2. Smooth start. We start by considering the one-dimensional half-plane prob-
lem

utt = uxx + F (x, t), a ≤ x < ∞, t ≥ 0,(20)

with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x)(21)

and the boundary condition

u(a, t) = f(t).(22)

We henceforth assume that all data belong to C∞. Therefore also the solution is
smooth, provided compatibility conditions are satisfied. In the one-dimensional set-
ting, these are

u(a, 0) = u0(a) = f(0),

ut(a, 0) = u1(a) = ft(0),

utt(a, 0) = u0xx(a) + F (a, 0) = ftt(0),

uttt(a, 0) = u1xx(a) + Ft(a, 0) = fttt(0),(23)

utttt(a, 0) = u0xxxx(a) + Fxx(a, 0) + Ftt(a, 0) = ftttt(0),

uttttt(a, 0) = u1xxxx(a) + Fxxt(a, 0) + Fttt(a, 0) = fttttt(0),

...

We introduce a grid

xν = νh, ν = 0, 1, 2, . . . ,(24)

where h > 0 is the grid size. When the boundary is aligned with the grid, e.g., a = 0, a
second order centered finite difference approximation of (20)–(22) yields the expected
second order convergence of the numerical solution and its gradient. However, we are



1148 HEINZ-OTTO KREISS AND N. ANDERS PETERSSON

interested in the case when the boundary is not aligned with the grid. We therefore
take a = (1 − β)h, 0 < β < 1, so that the boundary falls between x0 and x1. Hence,
the grid point x0 is outside the domain but will be used as a ghost point to aid in the
difference approximation. Let v(xj , t) be a grid function approximating u(xj , t). The
one-dimensional counterpart of the boundary condition (12) is

(25) B
(1)
h v(t) =: c0(β)v(x0, t) + c1(β)v(x1, t) + c2(β)v(x2, t)

+ γ(v(x0, t) − 2v(x1, t) + v(x2, t)) = f(t), γ > 0,

where the coefficients satisfy

c0(β) =
1

2
β(1 + β), c1(β) = (1 − β)(1 + β), c2(β) = −1

2
β(1 − β).(26)

Similar to the two-dimensional case, we remove the stiffness in the time integration
by taking γ > 0 such that the coefficient in front of v(x0, t) is bounded away from
zero for 0 ≤ β ≤ 1.

The semidiscrete difference approximation of (20)–(22) when the boundary is not
aligned with the grid becomes

vtt(xν , t) = Dx
+D

x
−v(xν , t) + F (xν , t), ν = 1, 2, . . . ,(27)

v(xν , 0) = u0(xν), vt(xν , 0) = u1(xν), ν = 1, 2, . . . ,(28)

B
(1)
h v(t) = f(t),(29)

where Dx
+v(xν , t) = (v(xν+1, t) − v(xν , t))/h is the usual forward divided difference

operator in the x-direction and Dx
−v(xν , t) = Dx

+v(xν−1, t). For later use, we also
define the centered operator Dx

0v(xν , t) = (v(xν+1, t)−v(xν−1, t))/(2h). Using Taylor
series expansions, we see that the error e(xν , t) = u(xν , t) − v(xν , t) satisfies

ett(xν , t) = Dx
+D

x
−e(xν , t) −

h2

12
uxxxx(xν , t) + O(h4), ν = 1, 2, . . . ,(30)

e(xν , 0) = et(xν , 0) = 0, ν = 1, 2, . . . ,(31)

B
(1)
h e(t) = γh2uxx(a, t) + h3(C + γβ)uxxx(a, t) + O(h4).(32)

Since the data are O(h2), |e(·, t)|∞ = O(h2). To derive an estimate for the gradient
of e, we first derive an equation for w = ett. By taking two time derivatives of the
differential equation (30) and the boundary condition (32), we get

wtt(xν , t) = Dx
+D

x
−w(xν , t) −

h2

12
uxxxxtt(xν , t) + O(h4), ν = 1, 2, . . . ,

B
(1)
h w(t) = γh2uxxtt(a, t) + h3(C + γβ)uxxxtt(a, t) + O(h4).

To derive initial data for w, we can apply the differential equation (30) to the initial
data (31). However, this only applies away from the boundary. For ν ≥ 2 we have

w(xν , 0) = −h2

12
uxxxx(xν , 0) + O(h4), ν = 2, 3, . . . ,

wt(xν , 0) = −h2

12
uxxxxt(xν , 0) + O(h4), ν = 2, 3, . . . .
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To evaluate the initial data at the first interior point x1, we must first apply the
boundary condition (32) to define e(x0, 0):

B
(1)
h e(0) =: (c0 + γ)e(x0, 0) + (c1 − 2γ)e(x1, 0) + (c2 + γ)e(x2, 0)

= γh2uxx(a, 0) + h3(C + γβ)uxxx(a, 0) + O(h4).

Since e(x1, 0) = e(x2, 0) = 0, Dx
+D

x
−e(x1, 0) = e(x0, 0)/h2. Therefore, (30) gives us

w(x1, 0) = ett(x1, 0) =
γ

c0 + γ
uxx(a, 0) +

h(C + γβ)

c0 + γ
uxxx(a, 0) + O(h2).

By taking the time derivative of the boundary condition, the same procedure can be
used to obtain

wt(x1, 0) = ettt(x1, 0) =
γ

c0 + γ
uxxt(a, 0) +

h(C + γβ)

c0 + γ
uxxxt(a, 0) + O(h2).

Hence, in general the forcing in the initial data is O(1) at the first interior point,
which makes |w(·, t)|∞ = O(1). Consequently, |Dx

+D
x
−e(·, t)|∞ = O(1) and we can

not obtain the desired estimate for the gradient of e.
The situation is much better in the case with homogeneous initial data, u0(x) =

u1(x) = 0. Now all spatial derivatives of u and ut are initially zero, so the initial data
for w are

w(xν , 0) = wt(xν , 0) = 0, ν = 1, 2, . . . .

Hence the forcing for w is O(h2). Therefore, we can derive an estimate for |ett(·, t)|∞ =
|w(·, t)|∞ = O(h2) and

|Dx
+D

x
−e(·, t)|∞ ≤ |w(·, t)|∞ +

h2

12
|uxxxx(·, t)|∞ = O(h2).

Since |Dx
+e(·, t)|∞ can be estimated in terms of e and Dx

+D
x
−e using a discrete Sobolev

inequality (see, e.g., [13]), we have

|Dx
+e|∞ = O(h2).

A problem with general, but compatible, initial data can be reformulated into a
problem with homogeneous initial data by changing variables according to (5). If the
original variable u satisfies (1)–(4), the variable ũ satisfies the modified problem

ũtt = Δũ + F̃ (x, t), x ∈ Ω, t ≥ 0,(33)

ũ(x, t) = f̃(x, t), x ∈ Γ, t ≥ 0,(34)

ũ(x, 0) = 0, x ∈ Ω,(35)

ũt(x, 0) = 0, x ∈ Ω,(36)

where the modified internal forcing function is

F̃ (x, t) = F (x, t) +
[
Δu0(x) + tΔu1(x) + (2 − 4t2)u0(x) + (6t− 4t3)u1(x)

]
e−t2

and the boundary forcing becomes

f̃(x, t) = f(x, t) − [u0(x) + tu1(x)]e−t2 , x ∈ Γ.
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To solve the problem for u(x, t), we first compute ũ(x, t) numerically and then add

in (u0(x) + tu1(x))e−t2 to obtain the solution of the original problem. By doing so,
we obtain a second order accurate solution where the gradient and second derivative
of the numerical solution are also second order accurate.

To verify the above theory, we solve the embedded boundary problem (27)–(29)
numerically. Now we consider the bounded domain

a ≤ x ≤ b

and add a boundary condition at x = b,

u(b, t) = f2(t).

The interior grid points are q0 ≤ ν ≤ q1 such that a + βh = xq0 and xq1 + β2h = b,
0 < β2 < 1. We take initial data, interior forcing function, and boundary forcing
functions such that the analytic problem is solved by u(x, t) = sin(2x− t+ π/4), i.e.,

F (xν , t) = 3 sin(2xν − t + π/4),

f(t) = sin(2a− t + π/4),

f2(t) = sin(2b− t + π/4),

u0(xν) = sin(2xν + π/4), u1(xν) = − cos(2xν + π/4).

We introduce a grid in time tn = nk, k > 0 and discretize time derivatives
by centered differences. We set h = 2π/N , where N is a positive integer, so that
xN = 2π. The boundary condition at x = a is discretized by (25), shifted to involve
the points (q0 − 1, q0, q0 + 1). The boundary condition at x = b is discretized using
a corresponding formula involving the points (q1 − 1, q1, q1 + 1) with β2 replacing β.
We arrive at the following explicit time integration scheme:

Dt
+D

t
−v(xν , tn) = Dx

+D
x
−v(xν , tn) + F (xν , tn), ν = q0, q0 + 1, . . . , q1,

v(xν , 0) = u0(xν), ν = q0, q0 + 1, . . . , q1,

v(xν ,−k) = u0(xν) − ku1(xν) +
k2

2
(u0xx(xν , 0) + F (xν , 0))(37)

−k3

6
(u1xx(xν , 0) + Ft(xν , 0)) , ν = q0, q0 + 1, . . . , q1,

B
(a)
h v(tn) = f(tn), B

(b)
h v(tn) = f2(tn).

One can show that the above scheme is stable for k/h < 1 when γ ≥ 0.25; see [1]
and Appendix A. Numerical computations (see Table 1) indicate that the solution is
second order accurate, but the gradient is only a little better than first order accurate
and the second derivative has an O(1) error. However, by using the smooth start
procedure, i.e., changing variables according to (5) and numerically solving (33)–(36),
second order accuracy is also obtained for the gradient and the second derivative; see
Table 2.

We have also observed that the convergence of the gradient improves when the
initial data is inhomogeneous, but the interior and boundary forcing functions are
homogeneous, F (x, t) = 0, f(t) = 0. From the compatibility relations (23), we see
that all even spatial derivatives of u and ut are zero at x = a, t = 0. In particular,
uxx(a, 0) = 0 and uxxt(a, 0) = 0, so the leading order terms in the initial data for
w become one order smaller in h. Hence, w(x1, 0) = O(h) and wt(x1, 0) = O(h),
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Table 1

Direct start: Error in the computed solution when the boundary is embedded between grid points.
The errors are reported at time t = 6.333, the domain is 0.37 ≤ x ≤ 5.1, γ = 0.2, and k/h = 0.9.

N ‖u− v‖∞ ‖ ∂u
∂x

−Dx
0 v‖∞ ‖ ∂2u

∂x2 −Dx
+Dx

−v‖∞ β β2

200 1.22 × 10−3 9.36 × 10−3 1.88 × 100 0.222 0.338

400 2.53 × 10−4 3.13 × 10−3 3.59 × 10−1 0.445 0.676

800 6.29 × 10−5 1.26 × 10−3 2.98 × 10−1 0.890 0.352

Table 2

Smooth start: Error in the computed solution when the boundary is embedded between grid
points. The errors are reported at time t = 6.333, the domain is 0.37 ≤ x ≤ 5.1, γ = 0.2, and
k/h = 0.9.

N ‖u− v‖∞ ‖ ∂u
∂x

−Dx
0 v‖∞ ‖ ∂2u

∂x2 −Dx
+Dx

−v‖∞ β β2

200 8.90 × 10−4 1.14 × 10−3 1.02 × 10−3 0.222 0.338

400 2.22 × 10−4 2.86 × 10−4 2.56 × 10−4 0.445 0.676

800 5.55 × 10−5 7.09 × 10−5 6.38 × 10−5 0.890 0.352

and we get |w(·, t)|∞ = O(h). Hence, |e(·, t)|∞ = O(h2) but |Dx
+D

x
−e(·, t)|∞ = O(h).

Numerical experiments suggest that the solution and its gradient are second order
accurate but the second derivative is only first order accurate. Naturally, the error
in the second derivative can be made second order accurate also in this case by using
smooth start.

There are also cases when the smooth start procedure is not necessary. This
occurs, for example, when the boundary data are homogeneous, f(t) = 0, and the
internal forcing and initial data have compact support in the interior of Ω.

3. An analytic model of the Dirichlet problem. In this section we first
consider Poisson’s equation

uxx + uyy = F (x, y)(38)

on the half-plane y − 2x ≤ 0 with Dirichlet boundary conditions

u(x, y) = f(x, y) for y = 2x.(39)

We want to solve the problem numerically, use the same Cartesian grid as before, and
approximate (38) by the second order approximation

Δhv(xm, yl) = Fh(xm, yl)

in all interior points. Here Fh is the restriction of F to the grid.

The grid is not aligned with the boundary. Along the boundary only every second
point is on the grid. A second order accurate approximation of (39) is, for example,
given by

v(lh, 2lh) = f(lh, 2lh),(40)

1

2

{
v
(
(l − 1)h, (2l − 1)h

)
+ v

(
lh, (2l − 1)h

)}
= f

((
l − 1

2

)
h, (2l − 1)h

)
(41)
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for l = 0,±1,±2, . . . . We write (40)–(41) formally as

Bhv = fh.

To obtain an error estimate we assume that the solution of (38)–(39) is smooth.
(This is, for example, the case if F, f are smooth and decay rapidly as |x|+ |y| → ∞;
cf. [14].) The usual truncation error analysis gives us, for the error e = v − u on the
grid,

Δhe = h2G in the interior,(42)

Bhe = h2g on the boundary.(43)

Here G is the restriction of a smooth function to the grid but g is, in general, not
smooth. The boundary condition (41) implies that g oscillates between 0 and uxx +
O(h2) from grid point to grid point. This rapid change is typical for embedded
boundary difference approximations in general domains.

If we want only to estimate e, this is tolerable because one can prove, using the
discrete maximum principle, that the error is O(h2). However, if we also want to
calculate the gradient, then the error degrades, in general, to O(h). This degradation
does not depend on G. If G �= 0, we solve an auxiliary problem

Δhe1 = h2G in the interior,(44)

Bhe1 = 0 on the boundary.(45)

The problem (44)–(45) is a second order accurate approximation of

Δu1 = h2G in the interior,

u1 = 0 on the boundary.

The function u1 and its gradient are of order O(h2). Since e1 − u1 = O(h4) on the
grid, the discrete gradient of e1 is O(h2). Subtracting the solution of (44)–(45) from
the solution of (42)–(43) shows that we can assume that G ≡ 0; i.e., we discuss

Δhe = 0 in the interior,(46)

Bhe = h2g on the boundary.(47)

To gain insight into the effects of highly oscillatory boundary data, we analyze
a modified equation model of (46)–(47). A more sophisticated analysis, where the
discrete nature of the problem is taken into account, will be presented elsewhere. The
problem (46)–(47) is a second order accurate approximation of

Δe = 0, y − 2x ≤ 0,(48)

e = h2g, y = 2x,(49)

and we proceed by studying the properties of its solution, in particular when g is
highly oscillatory. To simplify the notation, we rotate the coordinate system and
introduce the new independent variables

ξ = (2x− y)/
√

5,(50)

η = (x + 2y)/
√

5.(51)



WAVE EQUATION WITH DIRICHLET DATA 1153

The boundary is aligned with ξ = 0 and we consider the half-plane problem for ξ ≥ 0.
We assume that all functions are 2π-periodic in η. Fourier transforming (48)–(49) in
η gives us

êξξ − ω2ê = 0, ω integer,

ê(0, ω) = h2ĝ(ω).

Since we are mainly interested in highly oscillatory g, we always assume that ĝ(0) = 0.
Then the unique solution in L2 is given by

e = h2
∑
ω �=0

e−|ω|ξ+iωη ĝ(ω),(52)

and we have

eξ = −h2
∑
ω �=0

|ω|e−|ω|ξ+iωη ĝ(ω).

We make the following observations:
(1) If the boundary data are smooth, i.e., ĝ(ω) decays rapidly, then the solution

is also smooth up to the boundary.
(2) If we only know that g ∈ L2, then we obtain, for every fixed ξ,

‖eξ(ξ, ·)‖2 =

∫ π

−π

|eξ(ξ, η)|2dη =
∑
ω �=0

|ω|2e−2|ω|ξ|h2ĝ(ω)|2

=
1

ξ2

∑
ω �=0

|ξω|2e−2|ω|ξ|h2ĝ(ω)|2 ≤ const.

ξ2

∑
ω �=0

e−|ω|ξ|h2ĝ(ω)|2.

Thus the solution becomes smooth away from the boundary layer at ξ = 0.
(3) If the boundary data are highly oscillatory, i.e.,

g(η) =
∑

|ω|≥1/h

eiωη ĝ(ω), 0 < h << 1,

we obtain

‖eξ(ξ, ·)‖2 ≤ const.

ξ2

∑
|ω|≥1/h

e−|ω|ξ|h2ĝ(ω)|2

≤ const.

ξ2
e−ξ/h

∑
|ω|≥1/h

e−(|ω|−1/h)ξ|h2ĝ(ω)|2;

i.e., the thickness of the boundary layer is O(h).
(4) The highest frequency on a grid is |ωh| = π. Hence, if ĝ(ω) = 0 for |ω| > π/h,

then

‖eξ(ξ, ·)‖2 =
1

h2

∑
|ωh|≤π

|ωh|2e−2|ω|ξ|h2ĝ(ω)|2 ≤ π2
∑

|ωh|≤π

e−2|ω|ξ|hĝ(ω)|2.

Thus the gradient is of the order O(h).
We would like to point out that these estimates correspond to Schauder-type interior
regularity estimates; see, e.g., Chapters 4 and 6 of [14].
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To summarize our results for the Dirichlet problem for Poisson’s equation, the
gradient is only of the order O(h2) if the boundary data h2g(η) are the restriction of
a smooth function. For highly oscillatory g(η), the gradient will be O(h). We can
also use a third order accurate approximation of the boundary condition. Then the
solution is of the order O(h3) and the discrete gradient is of the order O(h2), even
if the boundary data are highly oscillatory. Since the problem is linear, we also get
a discrete gradient of the order O(h2) when the boundary data consist of a smooth
O(h2) term together with a highly oscillatory O(h3) component.

3.1. The wave equation. We next consider the wave equation (1)–(4) on the
half-plane y − 2x ≤ 0. We use the same grid and the same spatial discretization as
for Poisson’s equation, and study the following semidiscrete approximation:

vtt(xm, yl, t) = Δhv(xm, yl, t) + Fh(xm, yl, t), yl − 2xm < 0, t ≥ 0,

Bhv(t) = fh(t) on the boundary, t ≥ 0,

v(xm, yl, 0) = u0(xm, yl), yl − 2xm < 0,

vt(xm, yl, 0) = u1(xm, yl), yl − 2xm < 0.

Again we are interested in the accuracy of the solution and its gradient. We assume
that F , u0, and u1 are smooth functions that can be expanded smoothly to the entire
plane such that they decay rapidly as |x| + |y| → ∞. Therefore, we can assume that

F ≡ u0 ≡ u1 ≡ 0.(53)

Otherwise, we would first solve the continuous and semidiscrete Cauchy problems
which we would then subtract from u and v, respectively. The gradient of the solu-
tion of the semidiscrete Cauchy problem has full accuracy since it satisfies the same
equation as the solution itself (with different data). Thus we consider

utt = Δu, y − 2x ≤ 0, t ≥ 0,

u(x, y, t) = f(x, y, t), y − 2x = 0, t ≥ 0,

u(x, y, 0) = ut(x, y, 0) = 0, y − 2x ≤ 0.

If f(x, 2x, 0) �= 0, then the boundary data are not compatible with the initial data. If
we want the solution to have p bounded time derivatives, we need

∂jf(x, y, t)/∂tj
∣∣
t=0

= 0, j = 0, 1, 2, . . . , p− 1, y = 2x.(54)

The corresponding difference approximation is

vtt(xm, yl, t) = Δhv(xm, yl, t), yl − 2xm < 0, t ≥ 0,

Bhv(t) = fh(t) on the boundary, t ≥ 0,

v(xm, yl, 0) = vt(xm, yl, 0) = 0, yl − 2xm < 0.

We want to obtain an estimate for the error e = v − u on the grid, and by using
the same truncation error technique as for Poisson’s equation, we get the following
discrete error equation:

ett(xm, yl, t) = Δhe(xm, yl, t), yl − 2xm < 0, t ≥ 0,

Bhe(t) = h2gh(t) on the boundary, t ≥ 0,

e(xm, yl, 0) = et(xm, yl, 0) = 0, yl − 2xm < 0,
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where gh is highly oscillatory in space but smooth in time (because the interpolation
formulas do not depend on time). We proceed as for Poisson’s equation and study
the continuous modified equation model of the discrete error equation:

ett = Δe, y − 2x < 0, t ≥ 0,

e = h2g, y − 2x = 0, t ≥ 0,

e(x, y, 0) = et(x, y, 0) = 0, y − 2x < 0.

By rotating the coordinate system according to (50)–(51), we align the boundary with
ξ = 0 and arrive at a half-plane problem for ξ ≥ 0, −∞ < η < ∞. Up to now, we have
assumed a second order accurate discretization of the boundary condition, but the
same arguments also apply to a higher order boundary discretization. We therefore
take φ = h2g and study the half-plane problem

ett = Δe,

e(0, η, t) = φ(η, t),(55)

e(ξ, η, 0) = et(ξ, η, 0) = 0.

We assume that all data are 2π-periodic functions in η, Fourier transform the
problem in the η-direction, and obtain

êtt = êξξ − ω2ê,

ê(0, ω, t) = φ̂(ω, t),(56)

ê(ξ, ω, 0) = êt(ξ, ω, 0) = 0,

with

∂j φ̂(ω, t)/∂tj
∣∣
t=0

= 0, j = 0, 1, 2, . . . , p− 1.

Because of the compatibility assumption (54), the solution will be smooth in

time. If the boundary data are smooth in η, i.e., the Fourier coefficients φ̂(ω, t) decay
rapidly for large ω, the solution will also be smooth in space. However, as we have
seen before, the truncation error in the boundary condition is highly oscillatory in
space, and we proceed by studying large |ω|.

When |ω| � 1, we solve (56) by iteration. For j = 1, 2, . . . , let

ê
(j)
ξξ − ω2ê(j) = ê

(j−1)
tt ,

ê(j)(0, ω, t) = φ̂(ω, t).

We take ê(0) = 0, so ê(1) satisfies

ê
(1)
ξξ − ω2ê(1) = 0,

ê(1)(0, ω, t) = φ̂(ω, t).

The only bounded solution is ê(1)(ξ, ω, t) = φ̂(ω, t)e−|ω|ξ. The problem for ê(2) be-
comes

ê
(2)
ξξ − ω2ê(2) = φ̂tt(ω, t)e

−|ω|ξ,

ê(2)(0, ω, t) = φ̂(ω, t),
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which is solved by

ê(2) = ê(1) − 1

2ω2
φ̂tt|ω|ξe−|ω|ξ.

Note that αe−α ≤ const. for α ≥ 0. Hence, for |ω| � 1 the solution of (56) is

ê(ξ, ω, t) = φ̂e−|ω|ξ − 1

2ω2
φ̂tt|ω|ξe−|ω|ξ + O

(
1

ω4

)
.

As long as φtt is of the same order as φ, the gradient satisfies

êξ(ξ, ω, t) = ê
(1)
ξ (ξ, ω, t)

(
1 + O

(
1

ω2

))
.

Therefore, the properties of the gradient of ê can be reduced to the properties of ê(1),
which was studied in the previous section. Hence, for boundary data φ(ξ, t) which are
highly oscillatory in space but smooth in time, the gradient of e only becomes large
in a boundary layer near ξ = 0, while the solution remains smooth in the interior of
the domain. This means that if the boundary approximation is third order accurate
with a highly oscillatory truncation error, i.e., φ = h3g, the gradient of the solution
will be third order accurate except near the boundary ξ = 0, where it will be second
order accurate.

Note that the time-smoothness assumption is essential because φtt appears as
forcing for ê(2) and the number of time derivatives in the forcing will increase by
two for each iteration. However, this is not only a technicality due to our way of
constructing the solution. The error in the solution is studied numerically in the
next section, and it can clearly be seen that the error in the gradient becomes large
throughout the domain when the truncation error is not smooth in time; cf. Figure 2.
This illustrates a major difference in the behavior of hyperbolic and elliptic problems.
For elliptic problems, a high frequency boundary error will lead to a solution error
that is unsmooth only in a boundary layer. In contrast, for hyperbolic problems,
a boundary error which is highly oscillatory in both space and time will make the
solution error highly oscillatory throughout the domain. The unsmooth solution error
will be confined to a boundary layer only if the boundary error is smooth in time.

4. Numerical experiments. In this section we numerically solve (1)–(4) with
the scheme described above. We denote the CFL-number by CFL ≡ k/h. Note
that for a two-dimensional periodic domain our time-integration scheme (19) is stable
for CFL ≤ 1/

√
2 ≈ 0.71. Also note that all errors reported below are measured in

max-norm over all grid points inside Ω.

We start the time integration at n = 0 and take v0
i,j = u0(xi, yj). We need to use

a fourth order accurate approximation of u(xi, yj ,−k) for v−1
i,j . This is achieved by

using the differential equation to approximate the second and third time derivatives,

(57)

v−1
i,j = u0(xi, yj) − ku1(xi, yj) +

k2

2

(
Dx

+D
x
− + Dy

+D
y
−
)
u0(xi, yj) +

k2

2
F (xi,j , 0)

− k3

6

(
Dx

+D
x
− + Dy

+D
y
−
)
u1(xi, yj) −

k3

6
Ft(xi,j , 0).
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Note that when the smooth start procedure is employed, the initial data are homoge-
neous, and thus the above formula simplifies to

ṽ−1
i,j =

k2

2
F̃ (xi,j , 0) − k3

6
F̃t(xi,j , 0),

where the modified forcing initially satisfies

F̃ (x, 0) = F (x, 0) + 2u0(x) + Δu0(x), F̃t(x, 0) = Ft(x, 0) + 6u1(x) + Δu1(x).

To use the smooth start procedure, we need to evaluate Δuk, k = 0, 1, at all inte-
rior grid points. When u0(x, y) and u1(x, y) are complicated analytic expressions of x
and y, an appealing alternative is to approximate Δuk by finite differences. Numerical
experiments indicate that a centered second or fourth order accurate difference ap-
proximation of Δuk, k = 0, 1, can replace analytic expressions without any noticeable
degradation of the computed solutions, as long as u0 and u1 are well resolved on the
grid. However, to define all values in the five- or seven-point formula for the centered
difference approximation of the Laplacian, this approach works only if u0 and u1 can
be evaluated at all interior grid points as well as one or two grid points outside the
boundary, respectively.

4.1. Trigonometric exact solution. To evaluate the accuracy of the method
and the properties of the smooth start technique, we begin by considering the case
when the exact solution is known. Given a smooth function U(x, t), this is accom-
plished by constructing balancing interior and boundary forcing functions F (x, t) =
Utt(x, t) − ΔU(x, t) and f(xΓ, t) = U(xΓ, t), respectively. The initial data are ob-
tained by setting u0(x) = U(x, 0), u1(x) = Ut(x, 0). The continuous problem is
then discretized and the error in the discrete solution can be obtained by taking the
difference between the numerical and analytic solutions at each grid point.

We choose the exact solution to be the trigonometric traveling wave

U(x, y, t) = sin(ω(x− t)) sin(ωy), ω = 2π.(58)

The domain Ω is taken to be an ellipse centered at the origin with semiaxes xs = 1
and ys = 0.75. The Cartesian grid covers the rectangle −1.04 ≤ x ≤ 1.04, −0.78 ≤
y ≤ 0.78, the grid size is h = 2.08/(N − 1), and CFL = 0.5. To assess the accuracy
of the scheme we run the computations until time t = 2.0. Note that no damping is
necessary for these short runs (α = 0). In Table 3, we present a grid refinement study
for the scheme (19) started directly (from inhomogeneous initial data) and smoothly,
respectively. In both cases, the solution itself converges as O(h2), but the gradient
and Laplacian are second order accurate only when smooth start is being used. (The
second order formulas Dx

0vi,j and Dy
0vi,j are used to approximate the discrete gradient,

and the component of the gradient with the largest error is reported. The Laplacian
is approximated by Δhvi,j .) Note that when the computation is started directly, the
error in the gradient is only a little better than first order accurate and the error in
the Laplacian is O(1). This agrees with our observations for the one-dimensional case;
cf. Table 1.

To more clearly see the impact of the smooth start procedure on the solution, in
Figure 2 we plot the error in the solution at time t = 2.0, with direct and smooth
start. Clearly, the smooth start procedure efficiently removes the high frequency
errors present in the computation using direct start.
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Table 3

Grid refinement study showing the errors in the computed solutions at t = 2.0 when the exact
solution is the trigonometric function (58), with direct and smooth start.

Direct start Smooth start

N ‖uerr‖∞ ‖∇uerr‖∞ ‖Δuerr‖∞ ‖uerr‖∞ ‖∇uerr‖∞ ‖Δuerr‖∞
201 2.23 · 10−3 3.48 · 10−2 14.3 1.39 · 10−3 8.60 · 10−3 7.25 · 10−2

401 5.38 · 10−4 1.27 · 10−2 9.86 3.43 · 10−4 2.15 · 10−3 1.83 · 10−2
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Fig. 2. Error in the solution at time t = 2.0, with direct start (top) and smooth start (bottom).
In both cases, the grid size was h = 2.08/400 (N = 401) and CFL = 0.5. Contours are equally
spaced in [−4 · 10−4, 4 · 10−4] with step size 10−4.
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Fig. 3. Max error in the solution as a function of time for different damping coefficients α and
grid sizes N . For N = 401, time 1000 was reached after taking 384,615 time steps.

Next we investigate the long-time properties of the time-integration scheme. In
Figure 3 we report the error in the solution for different values of the damping coef-
ficient α and for grid sizes N = 201 and N = 401. The domain is the same ellipse
as before, CFL = 0.5, and smooth start is enabled. Damping is clearly needed to
reach time 1000, corresponding to 384, 615 time steps on the finer grid, and we need
to take α = 3 · 10−4 to stabilize the scheme for the coarse grid. However, for the finer
grid it suffices with α = 1.5 · 10−4. This suggests that α = hα̃; i.e., the damping
term can be of the order O(h4). Note that there is no apparent increase in the error
after long times, which indicates that the damping is very mild and that the scheme
is appropriate for long time computations.

4.2. The TMz problem. We proceed by testing our method on the TMz prob-
lem for Maxwell’s equations, i.e., the two-dimensional case where

H = H(x)(x, y, t)ex + H(y)(x, y, t)ey

and E = E(z)(x, y, t)ez. By scaling the dependent variables and time, Maxwell’s
equations describing a homogeneous, lossless material without charges simplify to (cf.
[15])

∂H(x)

∂t
= −∂E(z)

∂y
,(59)

∂H(y)

∂t
=

∂E(z)

∂x
in Ω, t ≥ 0,(60)

∂E(z)

∂t
=

∂H(y)

∂x
− ∂H(x)

∂y
,(61)

subject to the constraint

∂H(x)

∂x
+

∂H(y)

∂y
= 0 in Ω, t ≥ 0.(62)
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By cross-differentiation,

∂2E(z)

∂t2
=

∂2E(z)

∂x2
+

∂2E(z)

∂y2
in Ω, t ≥ 0.(63)

The perfectly electric conducting (PEC) boundary condition n × E = 0, where n =
n(x)ex + n(y)ey is the outward normal of the boundary, becomes

(exn
(y) − eyn

(x))E(z) = 0 on Γ,

i.e.,

E(z) = 0 on Γ.(64)

Instead of directly solving the first order system (59)–(61), we solve the second order
equation (63) subject to the Dirichlet boundary condition (64). Once E(z) is com-
puted, the equations for H(x) and H(y), (59) and (60), reduce to ordinary differential
equations at each point in Ω.

On the discrete side, (59) and (60) are integrated in time using the second order
Adams–Bashforth method:

H
(x)
i,j (tn+1) = H

(x)
i,j (tn) − k

2

(
3Dy

0E
(z)
i,j (tn) −Dy

0E
(z)
i,j (tn−1)

)
,(65)

H
(y)
i,j (tn+1) = H

(y)
i,j (tn) +

k

2

(
3Dx

0E
(z)
i,j (tn) −Dx

0E
(z)
i,j (tn−1)

)
.(66)

As a result, the following second order accurate centered approximation of the diver-
gence constraint (62) satisfies

Dx
0H

(x)
i,j (tn) + Dy

0H
(y)
i,j (tn) = Dx

0H
(x)
i,j (0) + Dy

0H
(y)
i,j (0), tn > 0.

Hence, if the discrete divergence is initially zero, it will remain so for all subsequent
times.

We use the scheme (19) together with the smooth start procedure to evolve (63).
This is a good test of the numerical accuracy of E(z), since H(x) and H(y) depend on
the gradient of E(z). Initial conditions for (59)–(61) are H(x)(x, 0), H(y)(x, 0), and
E(z)(x, 0). The second order formulation (63) also needs the time derivative of E(z)

at t = 0. This follows from (61):

E
(z)
t (x, 0) = H(y)

x (x, 0) −H(x)
y (x, 0).

Furthermore, to start the Adams–Bashforth scheme (65)–(66), we need an accurate
approximation of E(z)(xi,j ,−k):

E(z)(xi,j ,−k) = E(z)(xi,j , 0) − kE
(z)
t (xi,j , 0) +

k2

2
ΔhE

(z)(xi,j , 0).

When Ω is a unit circular disc, Maxwell’s equations can be solved analytically
using separation of variables using polar coordinates (ρ, θ):

x(ρ, θ) = ρ cos θ,

y(ρ, θ) = ρ sin θ.
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Table 4

Error in the computed solution of the TMz problem for the mode m = 3, n = 1 at time t = 2.0.

Direct start

N ‖E(z)
error‖∞ ‖H(x)

error‖∞ ‖H(y)
error‖∞ ‖E(z)

x error‖∞ ‖E(z)
y error‖∞ ‖ΔE

(z)
error‖∞

201 1.03 · 10−3 1.47 · 10−3 1.98 · 10−3 1.32 · 10−2 1.63 · 10−2 8.52 · 100

401 2.53 · 10−4 3.54 · 10−4 4.90 · 10−4 3.99 · 10−3 4.77 · 10−3 4.02 · 100

Smooth start

201 1.59 · 10−3 3.93 · 10−3 3.28 · 10−3 2.61 · 10−3 5.53 · 10−3 4.22 · 10−2

401 3.95 · 10−4 1.08 · 10−3 8.41 · 10−4 6.58 · 10−4 1.54 · 10−3 1.06 · 10−2

We can alternatively express H in terms of its Cartesian or polar components, related
by

H(x) = H(ρ) cos θ −H(θ) sin θ,

H(y) = H(ρ) sin θ + H(θ) cos θ.

Let Jm(ξ) denote the Bessel function of the first kind of order m (m = 0, 1, 2, . . . ) and
let Xmn be the nth zero of Jm (n = 1, 2, 3, . . . ), i.e., Jm(Xmn) = 0, 0 < Xm1 < Xm2 <
· · · . In terms of polar coordinates and components, the TMz problem is solved by
(cf. [15])

E(z)
mn(ρ, θ) = XmnJm(Xmnρ) cos(mθ) cos(Xmnt),(67)

H(ρ)
mn(ρ, θ) =

m

ρ
Jm(Xmnρ) sin(mθ) sin(Xmnt),(68)

H(θ)
mn(ρ, θ) = XmnJ

′
m(Xmnρ) cos(mθ) sin(Xmnt).(69)

Since the equations are linear, any linear combination of the above solution is also a
solution.

We evaluate the numerical scheme by solving the TMz problem on a unit circular
disc and compare the numerical solution to the exact analytic solution (67)–(69).
We consider the case m = 3, n = 1, where X31 ≈ 6.3801618959. The problem is
discretized on a computational grid with grid size h = 2.08/(N − 1) and CFL = 0.5.
In this computation, the coefficient of the artificial term in the Dirichlet boundary
condition is γ = 0.2. No stabilization is necessary for these short time computations,
and we set α = 0. In Table 4 we compare the errors when the computation is started
directly (from inhomogeneous initial data) and smoothly. In both cases, the errors in

E(z), H(x), H(y), E
(z)
x , and E

(z)
y are all O(h2). However, the errors in ΔE(z) reveal a

highly oscillatory component in E(z) when the computation is started directly. Since
∂H/∂t depends on the gradient of E(z), it is surprising that the errors in H are
smaller when the computation is started directly, since the errors in the gradient of
E(z) are smaller when the smooth start procedure is used.

In terms of our scaled variables, the total field energy within Ω is

Efield(t) =

∫
Ω

E · E + H · H dΩ.(70)

Maxwell’s equations (59)–(61) subject to a homogeneous PEC boundary condition
(64) imply Efield(t) = Efield(0), t > 0. Since our scheme uses damping to ensure
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Fig. 4. The error in the relative energy Efield(t)/Efield(0) as a function of time for a circular
domain for the mode m = 3, n = 1 of (67)–(69).

stability, it is of interest to evaluate how well the energy (70) is conserved by the
numerical approximation.

To evaluate (70), we need to integrate a grid function defined on the embedded
boundary grid. Let g(x) be a smooth function defined in Ω and take

gi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(xi,j), xi,j ∈ Ω,

extrap(g)i,j , xi,j �∈ Ω, xi±1,j ∈ Ω or xi,j±1 ∈ Ω,

0, otherwise,

where extrap(g)i,j is defined by linear extrapolation from the interior points. We
approximate the integral by a sum of grid cell averages of g:∫

Ω

g(x) dΩ ≈
∑
i,j

Ci+1/2,j+1/2
gi,j + gi+1,j + gi,j+1 + gi+1,j+1

4
.(71)

For interior cells where all four grid vertices are inside Ω, the cell area is Ci+1/2,j+1/2 =
h2. When all four grid vertices are outside Ω, the cell area is Ci+1/2,j+1/2 = 0. For
cells cut by the boundary, we first compute the intersections between the boundary
and the four grid lines xi, xi+1, yj , yj+1. To estimate the cell area, the cell boundary
is approximated by a linear segment between each intersection point. This procedure
together with the linear extrapolation to define extrap(g) in points just outside the
boundary has been verified to give a second order accurate quadrature formula.

In Figure 4 we plot the error in the relative energy Efield(t)/Efield(0) as a function
of time for a circular domain. As before, we study the mode m = 3, n = 1 and use
the same parameters as before. For these long time computations, the stabilization
term is necessary and we set α = 10−3. As can be expected, the conservation error
is O(h2) and grows approximately linearly in time. For the fine mesh, the relative
energy is conserved to within 5 ·10−5 at time t = 200, and we conclude that the effect
of the stabilization term is very small.

Next we study the evolution of a pulse centered at (x, y) = (xF , yF ) in a more
complicated region where the boundary is represented by a cubic spline; see Figure 5.
We start the computation from a localized perturbation in E(z) near (xF , yF ):

E(z)(x, y, 0) = φ(
√

(x− xF )2 + (y − yF )2).
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Fig. 5. The evolution of E(z) (top) and H (bottom) in the problem for the grid refinement test.
The left-hand figures show initial data and the right-hand figures show the solution at time t = 0.8.
The solutions are shown on the finest grid with 1601×1790 grid points. Contours are spaced equally
in [−1.0, 1.0] with step size 0.2. Every 32nd grid point is used in the vector plots in the bottom row.

To make the perturbation propagate (essentially) radially outward from (xF , yF ), we
take

∂E(z)

∂t
(x, y, 0) = −φ′(

√
(x− xF )2 + (y − yF )2).

However, to start the computation we must specify compatible initial data for H.
Let ψ(x, y) be a scalar field. The initial H field will be divergence free if

H(x)(x, y, 0) = −∂ψ

∂y
,(72)

H(y)(x, y, 0) =
∂ψ

∂x
.(73)

Note that (61) yields

∂E(z)

∂t
(x, y, 0) = Δψ.
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Hence, we can find the initial data for (E(x), E(y)) by solving the Poisson problem

Δψ = −φ′(74)

and inserting the gradient of ψ in (72)–(73). In special cases, this can be done ana-
lytically. Introduce polar coordinates (ρ, θ) centered around the point (xF , yF ),

x = xF + ρ cos θ,

y = yF + ρ sin θ,

and let φ be independent of θ, i.e., φ = φ(ρ). The solution of (74) is then

ψρ(ρ) = −φ(ρ) +
1

ρ

∫ ρ

0

φ(ρ′) dρ′,(75)

and since ψ is independent of θ, ψx = (x − xF )ψρ/ρ and ψy = (y − yF )ψρ/ρ. If we
take

φ(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, ρ < r0,

P
(

ρ−r0
r1−r0

)
, r0 ≤ ρ ≤ r1,

0, r > r1,

P (ξ) = aξ5(1 − ξ)5(ξ − 1/2),

we have
∫ 1

0
P (ξ) dξ = 0, and thus ψρ(ρ) has compact support in r0 ≤ ρ ≤ r1.

In the computation shown in Figure 5, we used xF = 0.4, yF = 0, r0 = 0.02,
and r1 = 0.08 to give the initial data compact support inside Ω, and set a = 10938.8,
which normalizes the initial data to −1 ≤ E(z)(x, y, 0) ≤ 1. Since the initial data have
compact support, the smooth start procedure was not necessary in this computation.
No exact solution is known for this problem and we resort to a grid refinement study
to access the accuracy of the computed solution. Three calculations were performed
where the grid size was h = 5.193 · 10−4, 2h, and 4h, respectively. The corresponding
grids had 1601 × 1790, 801 × 896, and 401 × 448 grid points, respectively. In this

computation, we used α = 10−3, γ = 0.25, and CFL = 0.5. Let (E
(z)
h , H

(x)
h , H

(y)
h ) be

the discrete solutions corresponding to grid size h. If the discrete solution is resolved
on the grid, we expect it to satisfy

E
(z)
h (xi, yj , tn) = E(z)(xi, yj , tn) + h2R(xi, yj , tn) + O(h3)

and similar expressions for H
(x)
h and H

(y)
h . Hence,

‖E(z)
h − E

(z)
4h ‖∞

‖E(z)
h − E

(z)
2h ‖∞

→ 5, h → 0,

and corresponding expressions for H
(x)
h and H

(y)
h . In Table 5, we report the calculated

convergence rates at time t = 0.8. The calculated rates are near the asymptotic value
of 5, which indicates that the solution is second order accurate. The relatively large
difference between the solution on the fine and coarse grids indicates that the solution
on that grid is not very accurate, despite being in the asymptotic range.

For completeness, we give the (x, y)-coordinates of the 21 node points in the peri-
odic interpolating cubic spline: (−0.0384, −0.2665); (0.25, −0.1); (0.4, −0.1); (0.4707,
−0.0707); (0.5, 0.0); (0.4707, 0.0707); (0.4, 0.1); (0.25, 0.1); (−0.0384, 0.2665);
(−0.1134, 0.3964); (−0.1741, 0.443); (−0.25, 0.433); (−0.2966, 0.3722); (−0.2866,
0.2964); (−0.2116, 0.1665); (−0.2116, −0.1665); (−0.2866, −0.2964); (−0.2966, −0.3722);
(−0.25, −0.433); (−0.1741, −0.443); and (−0.1134, −0.3964).
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Table 5

Convergence of the discrete solution.

X = E(z) X = H(x) X = H(y)

‖Xh −X4h‖∞ 0.3636 0.3552 0.2491

‖Xh −X2h‖∞ 0.0744 0.0621 0.0622

Ratio 4.89 5.24 4.00

5. Conclusions. We have developed a Cartesian embedded boundary method
for the second order wave equation in general two-dimensional domains subject to
Dirichlet boundary conditions, where both the solution and its gradient are second
order accurate. By adding a small artificial term to the discrete boundary condition,
we avoid the small-cell stiffness problem and can use an explicit time-integration
method where the time step essentially equals that of a periodic domain.

Work is under way to solve Maxwell’s equations written as a system of second
order wave equations by combining the current method with our previous method for
the Neumann problem [2]. Future developments include treatment of discontinuous
wave propagation speeds, unbounded domains (far field boundaries), and generaliza-
tions to three space dimensions.

Appendix A. Estimating γ in the Dirichlet boundary condition.
Consider the semidiscrete one-dimensional wave equation (27)–(29). After elimi-

nating the ghost point v0, we can write the system in matrix form as follows:

vtt = Av + F + b, v = (v1, v2, v3, . . . )
T
.

As before, F and b are the interior and boundary forcing terms, respectively. The
tridiagonal matrix A satisfies

A =
1

h2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 − c1−2γ
c0+γ 1 − c2+γ

c0+γ 0 0 · · ·

1 −2 1 0 · · ·

0 1 −2 1
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let the eigenvalues of A be λj . Since A can be symmetrized by a diagonal matrix, all
eigenvalues of A are real valued. For all rows except the first, the Gershgorin circles
(see, e.g., [16]) for the matrix h2A are

Λj = {z : |z + 2| ≤ 2}, j ≥ 2,

that is, a circle in the complex z-plane with radius 2 centered at z = −2. The circle
corresponding to the first row is

Λ1 =

{
z :

∣∣∣∣z + 2 +
c1 − 2γ

c0 + γ

∣∣∣∣ ≤ 1 − c2 + γ

c0 + γ

}
.

Since all eigenvalues of A are real, the circles correspond to intervals on the real axis,
and the Gershgorin circle theorem says that all eigenvalues of A are located in the
union of these intervals.
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We begin by demonstrating the small-cell stiffness when γ = 0 and β → 0. In
this case, the Gershgorin circle from the first row in A is disjoint from the remaining
circles when 0 ≤ β < (

√
3− 1)/2. For such β, there must be one eigenvalue of A that

lies within the interval

−3 − c1 − c2
c0

≤ h2λ1 ≤ −1 − c1 + c2
c0

,

and we conclude that h2λ1 → −∞ as β → 0. As a result, the CFL condition for the
explicit time integration scheme (37) becomes k/h → 0 as β → 0; see [1].

Next, we want to estimate the eigenvalue with the largest magnitude for γ > 0.
The interval corresponding to all circles except the first is −4 ≤ 
(z) ≤ 0 and the
interval from Λ1 is

−3 − c1 − c2 − 3γ

c0 + γ
≤ 
(z) ≤ −1 +

γ − c1 − c2
c0 + γ

.

Hence, we study how large

q(β, γ) =
c1(β) − c2(β) − 3γ

c0(β) + γ

can be for 0 ≤ β ≤ 1, γ > 0. The coefficients in q are given by (26). When γ ≤ 0.25,
the maximum of q is attained at β = 0 and satisfies

max
0≤β≤1

q(β, γ) = q(0, γ) =
1 − 3γ

γ
, γ ≤ 0.25.(76)

For γ > 0.25, max q(β, γ) < q(0, 0.25). Hence, to obtain the same lower bound from
the first Gershgorin circle as from the rest, we require max q ≤ 1 and (76) gives
γ ≥ 0.25. The upper bound from Λ1 is always less than zero for 0 ≤ β ≤ 1. Hence,
all eigenvalues of A satisfy the estimate

−4 ≤ h2λj ≤ 0 for γ ≥ 0.25,

and the CFL condition for the explicit time integration scheme (37) becomes k/h < 1,
see [1].
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