PVODE and KINSOL: Parallel Software for
Differential and Nonlinear Systems

Alan C. Hindmarsh
Allan G. Taylor
Lawrence Livermore National Laboratory

Center for Applied Scientific Computing

UCRL-ID-129739
February 1998

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

PVODE AND KINSOL: PARALLEL SOFTWARE FOR
DIFFERENTIAL AND NONLINEAR SYSTEMS*

ALAN C. HINDMARSH AND ALLAN G. TAYLOR'

Abstract. In this project, parallel general-purpose software for two classes of mathematical problems
has been developed. PVODE is a portable solver for ordinary differential equation systems, based on robust
mathematical algorithms, and targeted at large systems on parallel machines. It is the parallel extension
of the earlier sequential solver CVODE. A related solver called KINSOL has been developed for systems of
nonlinear algebraic equations. KINSOL was first developed as a sequential solver, on a design that permitted
extending it to a parallel version with fairly minimal additions. Both PVODE and KINSOL are being used
within a parallel version of the tokamak edge plasma model UEDGE. KINSOL is also being applied in the
ParFlow groundwater flow model to solve a nonlinear pressure equation.

1. Introduction. This is a final report on the PVODE LDRD Project (95-ERP-036),
which was funded in Fiscal Years 1995 - 1997. In this section, we summarize the goals and
motivations for the project.

A large number of application codes, both within and outside LLNL, make use of mod-
ern solvers for ordinary differential equation (ODE) systems, nonlinear algebraic equation
systems, and differential-algebraic equation (DAE) systems. The need for higher resolution
and speed is forcing many of these applications to move to massively parallel processors
(MPPs), where they will need parallel versions of such solvers.

ODE solvers written at LLNL are among the most widely used ODE initial value sys-
tem solvers anywhere. The initial goal of the project was to produce a code system for
parallel machines called PVODE (Parallel Variable-coefficient ODE solver) that combines
the capabilities of two older (sequential) solvers. In the case of large stiff systems, implicit
methods must be used, and the natural choice for solving the linear systems that arise is that
of preconditioned iterative methods. For that case, we have also developed preconditioner
modules based on sparse approximations to the system Jacobian matrix.

There are two other widely used sequential software packages, written at LLNL, which
solve nonlinear algebraic systems and DAE systems, respectively. Both of these make use
of the same preconditioned iterative (Krylov) methods as the ODE solvers. Building on
both PVODE and our sequential nonlinear system solver NKSOL, we have developed a
parallel nonlinear system solver called KINSOL (Krylov Inexact Newton SOLver). The
preconditioner module developed for PVODE has been adapted for use with KINSOL. In a
similar spirit, we plan to develop an analogous parallel solver for DAE systems.

To support users with Fortran application programs, we have developed a set of For-
tran/C interfaces which allow Fortran users to use PVODE. A similar set of interfaces sup-
ports Fortran users of KINSOL.

We have worked on applications of this software in two different areas. The first is to

* Research performed under the auspices of the U.S. Department of Energy, by Lawrence Livermore
National Laboratory under contract W-7405-ENG-48. Work supported by LDRD, Project 95-ER-036.
t Center for Applied Scientific Computing, L-561, LLNL, Livermore, CA 94551.

2-D tokamak edge plasma models developed in LLNL’s Magnetic Fusion Energy Division.
Their sequential code UEDGE has relied on three of our solvers for several years, and a
parallel version of it is in development. The other is an application of KINSOL to nonlinear
pressure equations in groundwater modeling, within LLNL’s Center for Applied Scientific
Computing.

2. PVODE - a Parallel ODE Solver.

2.1. Mathematical preliminaries. PVODE solves initial-value problems for systems
of ODEs. Such problems can be stated as

(1) y = f(t: y)) y(tO) = Yo, Yy € RN7

where § = dy/dt and R" is the real N-dimensional vector space. That is, (1) represents
a system of N ordinary differential equations and their initial conditions at some ¢3. The
dependent variable is y and the independent variable is %.

The PVODE solver was developed as an extension to parallel machines of an older soft-
ware package called CVODE [9, 10]. The ODE solver CVODE, which was written by Cohen
and Hindmarsh, combines features of two earlier Fortran codes, VODE [1] and VODPK [5],
written by Brown, Byrne, and Hindmarsh. Both use variable-coefficient multistep integration
methods, and address both stiff and nonstiff systems. (Stiffness is defined as the presence of
one or more very small damping time constants.) VODE uses direct linear algebraic tech-
niques to solve the underlying banded or dense linear systems of equations in conjunction
with a modified Newton method in the stiff ODE case. On the other hand, VODPK uses
a preconditioned Krylov iterative method [3] to solve the underlying linear system. User-
supplied preconditioners directly address the dominant source of stiffness. Consequently,
CVODE implements both the direct and iterative methods. Currently, with regard to the
nonlinear and linear system solution, PVODE has three method options available: functional
iteration, Newton iteration with a diagonal approximate Jacobian, and Newton iteration
with the iterative method SPGMR (Scaled Preconditioned Generalized Minimal Residual
method) [3, 16].

PVODE solves the ODE system by one of two numerical methods — the backward
differentiation formula (BDF) and the Adams-Moulton formula. Both are implemented
in variable-stepsize, variable-order form. The BDF uses a fixed-leading-coefficient form,
as opposed to the fully variable-step form (see [1]). The two formulas used can both be
represented by a linear multistep formula

K K>
(2) Z O iYn—i + hn Z Bn,iyn—i = 07

where the N-vector ¥y, is the computed approximation to y(t,), the exact solution of (1) at ¢,.
The stepsize is hy, = t, —t,_1. The coefficients «,, ; and (3, ; are uniquely determined by the
particular integration formula, the history of the stepsize, and the normalization oy, o = —1.
The Adams-Moulton formula is recommended for nonstiff ODEs and is represented by (2)
with K1 = 1 and Ky = ¢ — 1. The order of this formula is ¢ and its values range from 1

2

through 12. For stiff ODEs, BDF should be selected and is represented by (2) with K; = ¢
and Ky = 0. For BDF, the order ¢ may take on values from 1 through 5. In the case of
either formula, the integration begins with ¢ = 1, and after that ¢ varies automatically and
dynamically.

For either BDF or the Adams formula, g, denotes f(t,,y,). That is, (2) is an implicit
formula, and the nonlinear equation

(3) G(yn) = Yn— hnﬁn,of(tna yn) —a, =0
an = Z(a’n,iynfi + hnﬁn,zynfz)
>0

must be solved for y, at each time step. For nonstiff problems, functional (or fixpoint)
iteration is normally used and does not require the solution of a linear system of equations.
For stiff problems, a Newton iteration is used and for each iteration an underlying linear
system must be solved. This linear system of equations has the form

(4) M[yn(m—H) - yn(m)] = _G(yn(m))v
where yn(m) is the mth approximation to y,, and M approximates 0G/0y:

of

) MxI—-~J, J=_
() 77 8y?

Y= hnﬁn,o-

At present, aside from the diagonal Jacobian approximation, the only option imple-
mented in PVODE for solving the linear systems (4) is the iterative method SPGMR, (Scaled,
Preconditioned GMRES) [3], which is a Krylov subspace method. In most cases, performance
of SPGMR is improved by user-supplied preconditioners.

SPGMR is one of a class of preconditioned Krylov methods. Write the linear system (4)
simply as

(6) Az =b.

A preconditioned Krylov method for (6) involves a preconditioner matrix P that approxi-
mates A, but for which linear systems Px = b can be solved easily. For preconditioning on
the left, the Krylov method is applied to the equivalent system

(P7tA)z = P,
while for right preconditioning it is applied to
(AP~Y)(Pz) = b.

In PVODE, the user may precondition the system on the left, on the right, on both the
left and right, or use no preconditioner. (Actually, preconditioning on both sides involves a
factorization of P as P; P, into factors used on the two sides of A.) In any case, the Krylov
method (in our case GMRES) is applied to the transformed system

AZ = b.

w
I

From an initial guess Zy, an approximate solution Z,, = Zy+z is obtained form = 1,2, ... (un-
til convergence), with z chosen from the Krylov subspace K,, = span{rgy, Arg,..., A™ 'ry}
of dimension m, where r(is the initial residual b — Azy. Each Krylov iteration requires one
matrix-vector multiply operation Av, which is a combination of multiplies by A and by P~.
Multiplication of a given vector v by A requires the product Jv, and that is approximated
by a difference quotient [f(¢,y + ov) — f(¢,y)]/o. Multiplication by P~! is to be provided
by the user of the solver, and is generally problem-dependent. In the case of GMRES, the
choice in K, is based on minimizing the Ly norm of the residual b — Az,, [3, 16].

The integrator computes an estimate E,, of the local error at each time step, and strives
to satisfy the local error test
(7) 1 Enll s < 1-

rms,w
Here the weighted root-mean-square norm is defined by

N 1/2
2
(8) ”E””rms,w = [Z N (wZEn,Z)] ’
=1

where E,, ; denotes the ith component of E,, and the ¢th component of the weight vector is

1
wi= rtol|y;| + atol;

(9)

This permits an arbitrary combination of relative and absolute error control. The user-
specified relative error tolerance is the scalar rtol and the user-specified absolute error tol-
erance is atol, which may be an N-vector (as indicated above) or a scalar. Since these
tolerances define the allowed error per step, they should be chosen conservatively.

In most cases of interest to the PVODE user, the technique of integration will involve
BDF, the Newton method, and SPGMR.

2.2. Solver design and development. The CVODE package was designed and devel-
oped earlier with the parallel extension in mind. More specificallyy, PVODE was envisioned
as an extension of CVODE which would run on parallel machines in the Single Program,
Multiple Data (SPMD) multiprocessor programming paradigm. CVODE has a highly mod-
ular design, in which the central algorithm for the ODE integration is separated from those
for solving the linear systems. Each of the linear solvers used is incorporated in a generic
form, suitable for use in its own right, with a small amount of interface coding connecting
it with the ODE solver. Because the applications of our parallel solvers are expected to be
large in size, and because direct methods do not parallelize as easily, we chose not to retain
in PVODE the direct linear system methods that are in CVODE, but focus mainly on the
Krylov iterative method SPGMR.

Another important feature of the CVODE design is that, with the direct linear solvers
removed, all operations on N-vectors are carried out in a separate module of vector ker-
nels. It is this vector module that has been rewritten in generating the parallel extension,
PVODE. The required modifications include a revised definition of the N_Vector type, in

4

that N-vectors in PVODE are distributed across the multiple processors. Our revised im-
plementations of the vector kernels make use of message passing, and to some extent are
specific to the particular parallel machine environment. However, by design, we have isolated
the machine-dependent coding, and kept to a minimum the passing of machine-dependent
information in the user interface to PVODE.

Our first implementation of PVODE was written for the Cray-T3D machine (256 pro-
cessors) with its shared memory (SHMEM) programming model. Thus the corresponding
revised vector kernels use functions from the SHMEM Library to perform the needed reduc-
tion operations, and must set up certain SHMEM work arrays accordingly. We refer to the
resulting package as SHMEM_PVODE.

Subsequently, we developed a version of PVODE based on the Message Passing Interface
(MPI) system, which is becoming a widely accepted standard interface for message passing
software. Our vector kernels in this case are considerably simpler than in the SHMEM case,
because MPI operates at a somewhat higher linguistic level. Moreover, since MPI has been
widely implemented in most parallel machines, this version, called MPI_PVODE; is highly
portable, whereas SHMEM_PVODE is suitable for the Cray-T3 series exclusively.

In both implementations of PVODE, we quickly demonstrated proof of the basic design
principle, whereby parallel extensions to CVODE can be isolated to the module of vector
kernels. Moreover, the re-entrant design allows two or more instances of PVODE to be run
in parallel. The portability of MPI_PVODE is demonstrated in that it has been run on an
IBM SP2, a Cray-T3D and Cray-T3E, and a cluster of workstations.

The PVODE package can be thought of as being organized in layers. The user’s main
program resides at the top level. This program makes various initialization calls, and calls
the core integrator CVode, which carries out the integration steps. Of course, the user’s main
program also manages input/output. At the next level down, the core integrator CVode
manages the time integration, and is independent of the linear system method. CVode calls
the user supplied function f and accesses the linear system solver. At the third level, the
linear system solver CVSpgmr can be found, along with the approximate diagonal solver
CVDiag. Actually, CVSpgmr calls a generic solver for the SPGMR method, consisting of
modules SPGMR and ITERATIV. CVSpgmr also accesses the user-supplied preconditioner solve
routine, if specified, and possibly also a user-supplied routine that computes and preprocesses
the preconditioner by way of the Jacobian matrix or an approximation to it. Other linear
system solvers may be added to the package in the future. Such additions will be independent,
of the core integrator and CVSpgmr. Three supporting modules reside at the fourth level:
LLNLTYPS, LLNLMATH, and NVECTOR. The first of these defines types real and integer. The
second specifies power functions, and the third is discussed further below.

As explained earlier, a separate module of vector kernels, NVECTOR, handles all calcula-
tions on N-vectors in a distributed manner. For any vector operation, each processor per-
forms the operation on its contiguous elements of the input vectors, of length (say) Nlocal,
followed by a global reduction operation where needed. In this way, vector calculations can
be performed simultaneously with each processor working on its block of the vector. Vec-
tor kernels are designed to be used in a straightforward way for various vector operations
that require the use of the entire distributed N-vector. These kernels include dot products,

5

weighted root-mean-square norms, linear sums, and so on. The key lies in standardizing the
interface to the vector kernels without referring directly to the underlying vector structure.
This is accomplished through abstract data types that describe the machine environment
data block (type machEnvType) and all N-vectors (type N_Vector). Functions to define
a block of machine-dependent information and to free that block of information are also
included in the vector module.

The modules in the PVODE package are listed in Table 1 below. Corresponding to
each module name are .h and .c file names (.h only for LLNLTYPS). The routines listed
as user-callable are those that a PVODE user would call. The SPGMR module also has
user-callable routines, if used as a linear system solver by itself.

‘ Module name ‘ User-callable routines ‘ other contents

CVODE CVodeMalloc, CVode, | RHS function type RhsFn
CVodeFree, CVodeDky
CVDIAG CVDiag
CVSPGMR | CVSpgmr Preconditioner function types
CVSpgmrPrecondFn, CVSpgmrPSolveFn
SPGMR SpgmrMalloc, SpgmrSolve, SpgmrFree
ITERATIV Routines in support of SPGMR
NVECTOR PVecInitMPI, Type N_Vector; vector macros
PVecFreeMPI, N_VMAKE, N_VDATA, etc.
19 other vector kernels
LLNLMATH UnitRoundoff, RPowerl, RPowerR, RSqrt;
Macros MIN, MAX, ABS, SQR
LLNLTYPS Types real, integer, bool
TABLE 1

Modules in the PVODE package

2.3. Usage. We give here a brief summary of the usage of MPI_PVODE by an appli-
cation written in C. (The usage of SHMEM_PVODE is very similar.) This is not intended
as a user manual, and for completed usage information, the reader should see either the
PVODE user document [6], or the CVODE User Guide [9]. The sample programs should
also be helpful in setting up applications for use of PVODE.

The calling program must include several header files so that various constants, macros,
and data types can be used. The header files that are always required are: 1lnltyps.h,
which defines certain data types and constants; cvode.h, which defines several constants
related to the integrator and the function type for f; nvector.h, which defines the N_vector
type and related macros; and mpi.h, for MPI-related constants. If the user chooses Newton
iteration together with the linear system solver SPGMR, then the calling program must also
include cvspgmr.h, which defines certain constants and function types related to SPGMR.

The user’s program must have the following steps in the order indicated:

1. MPI_Init(&argc, &argv); to initialize MPI if used by the user’s program. Here
argc and argv are the command line argument counter and array received by main.
6

2. Set Nlocal, the local vector length, and Neq, the global vector length (the problem
size N), and specify the active set of processors.

3. machEnv = PVecInitMPI(comm, Nlocal, Neq, &argc, &argv); to initialize the
NVECTOR module. Here comm is the MPI communicator.

4. Set the vector y of initial values for the dependent variable in one of two ways. Invoke
the macro N_VMAKE(y, ydata, machEnv); if an existing array ydata contains the
values of y. Alternatively, make the call y = N_VNew(Neq, machEnv); and load
initial values into the array defined by N_VDATA(y).

5. cvode_mem = CVodeMalloc(...); which allocates internal memory for CVODE,
initializes CVODE, and returns a pointer to the CVODE memory structure. This
call specifies the problem size, the name of the routine defining f(¢,y), the method
options (Adams vs BDF, Newton vs functional iteration), the tolerances, and op-
tional inputs.

6. CVSpgmr(...); to invoke Newton iteration with SPGMR. This call specifies the
preconditioner type, the names of the user-supplied preconditioner routines, and
optional inputs related to SPGMR.

7. ier = CVode(cvode mem, tout, y, &t, itask); for each output point t = tout
at which the computed solution is desired. The input flag itask directs the inte-
grator to either overshoot and interpolate, or take a single step towards tout and
return.

8. N_VDISPOSE; or N_VFree; to deallocate the memory for the vector y.

9. CVodeFree(cvode_mem) ; to free the memory allocated for CVODE.

10. PVecFreeMPI(machEnv) ; to free machine-dependent data.

Steps 1 — 4 and 10 are specific to the parallel machine environment. Steps 5 — 9, which
constitute the bulk of the computation, have exactly the same form here as they do in the
use of the sequential solver CVODE.

The user must always provide a C function defining f(¢,y). If SPGMR is selected with a
preconditioner, then the user must also supply a function that solves linear systems with the
preconditioner (or its factors) as the system matrix. If the preconditioner is to use Jacobian-
related data that is saved and/or preprocessed, then a second routine must also be supplied
for this purpose.

3. KINSOL — a Parallel Nonlinear System Solver. The KINSOL package is a
parallel nonlinear system solver callable from either C or Fortran programs. Its most no-
table feature is that it uses Krylov Inexact Newton techniques in the system’s approximate
solution, thus sharing significant modules with the PVODE ODE package. It also requires
almost no matrix storage for solving the Newton equations as compared to direct methods.
The name KINSOL is derived from those techniques: Krylov Inexact Newton SOLver. The
package was arranged so that selecting which form of a single module to use will allow the
entire package to be compiled in serial (sequential) or parallel form.

3.1. Mathematical preliminaries. The code is a C implementation of a previous
code, NKSOL, a nonlinear system solver written in Fortran by Brown and Saad [4]. The
module of vector primitives NVECTOR, shared with the code PVODE, required several new

7

primitives for this implementation.
The nonlinear system of equations

(10) F(u) =0,

where F(u) is a nonlinear function from RY to R”, is solved by this package. Newton’s
method is applied to (10) resulting in the following iteration:
Inexact Newton iteration
1. Set up = an initial guess.
2. For n=0,1,2, ... until convergence do:
(a) Solve J(uy)d, = —F(uy),
(b) Set tpi1 = Uy + Oy,
(c) Test for convergence,
where J(u,) = F'(u,) is the system Jacobian. As this code module is anticipated to be
appropriate for large systems, iterative methods are used to solve the system in step 2(a).
These solutions are only approximate. Methods of this type used for solution of nonlinear
systems are called Inexact Newton methods. At each stage in the iteration process, a multiple
of the approximate solution ¢,, is added to the previously determined iterated approximate
solution to produce a new approximate solution. Convergence is tested before iteration
continues.
As only the matrix vector product J(u)v is required in the Krylov method, in this
nonlinear equations setting that action is approximated by a difference quotient of the form
F(u+ov) — F(u)

(11) J(u)v = S ,

where u is the current approximation to a root of (10) and o is a scalar, appropriately chosen
to minimize numerical error in the computation of (11). Alternatively, we allow the user to
supply, optionally, a routine that computes the product J(u)v.

To the above methods are added scaling and preconditioning. Scaling is allowed for
both the approximate solution vector and the system function vector. Additionally, right
preconditioning is provided for if the preconditioning setup and solve routines are supplied
by the user.

While only one linear solver is now implemented for use with this package, the formal
structure is in place for alternate solvers. That solver implemented currently is the GMRES
solver, where GMRES stands for Generalized Minimal RESidual.

Two methods of applying a computed step J,, to the previously computed approximate
solution vector are implemented. Denoted ’global strategies’, they attempt to use the di-
rection implied by d,, in the most efficient way in furthering convergence of the global (i.e.,
nonlinear) problem. The first and simplest is the Inexact Newton strategy. A more advanced
techniques is implemented in the second strategy, called Linesearch.

In most respects, the KINSOL algorithm is basically that given by Brown and Saad in
[4]. But there has been one addition to it — a set of forcing term options developed by
Homer Walker [11]. This provides additional choices to the user for stopping the Newton
iteration.

3.2. Solver design and development. The package was heavily based on the coding
style and structure preexisting in CVODE/PVODE. This was predicated upon the require-
ment that the same vector kernel implementation and GMRES solvers be used in both codes.
At the same time, those features somewhat unique to the Fortran language (e.g., those con-
structs used in the original code NKSOL), were placed appropriately in a C language setting.
Considerable simplification of the calling sequences resulted from this process. Of course,
the resulting C language structure maintains relative privacy for definitions for each portion
of the code. The resulting code has proven to be readily adaptable to either sequential or
parallel execution by means of two versions of the module NVECTOR.

As the algorithms of NKSOL had several unique features, notably the way that con-
straints were handled, several new vector kernels were written and added to the module
NVECTOR. The changes, completely transparent to CVODE/PVODE, have now been incor-
porated in the 'common’ version of NVECTOR.

The code is organized as shown in Table 2. For each module there are two corresponding
files. For example, KINSOL requires both the files kinsol.c and kinsol.h.

‘ Module name ‘ User-callable routines ‘ other contents ‘

KINSOL KINMalloc, KINSol, system function type SysFn; linear solver
KINFree function pointers linit, Isetup, lsolve, lfree
KINSPGMR | KINSpgmr KINSpgmrPrecondFn type
KINSpgmrPrecondSolveFn type
KINSpgmrAtimesFn type
SPGMR SpgmrMalloc, SpgmrSolve, SpgmrFree
ITERATIV Routines in support of SPGMR
NVECTOR PVecInitMPI, Type N_Vector; vector macros
PVecFreeMPI, N_VMAKE, N_VDATA, etc.
19 other vector kernels
LLNLMATH UnitRoundoff, RPowerl, RPowerR, RSqrt;
Macros MIN, MAX, ABS, SQR
LLNLTYPS Types real, integer, bool
TABLE 2

Modules in the KINSOL package

3.3. Usage. We give here a brief summary of the usage of KINSOL by an application
program written in C. This is not intended as a user manual, and for complete usage infor-
mation, the reader should see the appropriate documentation and header files supplied in
the package. The sample programs should also be helpful in setting up applications for use
of KINSOL.

As with PVODE, the program calling KINSOL must include several header files so that
various constants, macros, and data types can be used. The header files which are always
required are: 11nltyps.h, which defines certain data types and constants; kinsol.h, which
defines several constants related to the integrator and the function type for F'; nvector.h,

9

which defines the N_vector type and related macros; mpi.h, for MPI-related constants; and
kinspgmr.h, which defines certain constants and function types related to SPGMR.

The user’s program must have the following steps in the order indicated:

1. MPI_Init(&argc, &argv); to initialize MPI if used by the user’s program. Here
argc and argv are the command line argument counter and array received by main.

2. Set Nlocal, the local vector length, and Neq, the global vector length (the problem
size N), and specify the active set of processors.

3. machEnv = PVecInitMPI(comm, Nlocal, Neq, &argc, &argv); to initialize the
NVECTOR module. Here comm is the MPI communicator.

4. Set the vector uu of initial values for the dependent variable u in one of two ways.
Invoke the macro N_VMAKE (uu, udata, machEnv); if an existing array udata con-
tains the values of u. Alternatively, make the call uu = N VNew(Neq, machEnv);
and load initial values into the array defined by N_VDATA (uu).

5. kmem = KINMalloc(Neq, msgfp, machEnv); which allocates internal memory for
KINSOL and returns a pointer to the KINSOL memory structure. This call uses
the problem size, Neq, in allocating memory appropriately.

6. KINSpgmr (...); to invoke the SPGMR as the linear solver. This call specifies the
names of the user-supplied preconditioner routines, and optional inputs related to
SPGMR.

7. ier = KINSol (kmem, uu, func, ...); This call invokes the KINSOL solver for
the initial guess preloaded into uu and for the system defined by the function func
representing F'(u). Other user options are specified here as well.

8. N_VDISPOSE; or N_VFree; to deallocate the memory for the vector uu.

9. KINFree (kmem) ; to free the memory allocated for KINSol.

10. PVecFreeMPI (machEnv); to free machine-dependent data.

Steps 1 — 4 and 10 are specific to the parallel machine environment. Steps 5 — 9, which
constitute the bulk of the computation, are exactly the usage steps in using KINSOL for
serial execution.

The user must always provide a C function defining F'(u). If a preconditioner is used
with SPGMR, then the user must also supply a function that solves linear systems with the
preconditioner (or its factors) as the system matrix. If the preconditioner is to use Jacobian-
related data that is saved and/or preprocessed, then a second routine must also be supplied
for this purpose i.e., a preconditioner setup routine).

4. Preconditioners Based on Domain Decomposition. A critical feature in the
use of Krylov iterative methods is the choice of preconditioner. For realistic problems, some
non-trivial preconditioner is usually essential to achieve an acceptable rate of convergence.
Yet the details of suitable preconditioners tend to be specific to the problem at hand.

We have investigated a type of preconditioner that is fairly effective and yet rather
general in scope of applicability. To do this, we restrict our attention to problems that
are based on discretized partial differential equations (PDEs) or PDE systems, leading to
either large ODE systems or large nonlinear algebraic systems. In the solution of such a
system on a multiprocessor, a natural approach is to subdivide the spatial domain into
subdomains, and assign all the unknowns associated to one subdomain to one processor.

10

Given such a domain decomposition, we can build preconditioners for the complete system
by building preconditioners on each subdomain separately and combining them as a block-
diagonal matrix.

Specifically, suppose that the domain of the computational problem has been subdivided
into M non-overlapping subdomains. Each of these subdomains is then assigned to one of
the M processors to be used to solve the ODE or algebraic system. Denote the system
function by f(y) (or f(¢,y) in the ODE case), where for the sake of uniformity, we will use
y to denote the vector of unknowns, and f to denote the system function, in both the ODE
and algebraic system cases. We wish to approximate the Jacobian J = 0f/dy, at least in
a local sense on each processor. In practice, however, it may be more cost-effective to work
with some approximation to f(y), say g(y), whose partial derivatives are less costly but still
sufficiently close to those of f numerically. Corresponding to the domain decomposition, the
solution vector y can be partitioned into M non-overlapping blocks y,,, and likewise g has
M blocks g,,. The block g,,, depends on y,, and also on components of blocks y,,,» associated
with neighboring subdomains (so-called ghost-cell data). Let g, denote y,, augmented with
those other components on which g, depends. Then the function g(y) can be written

(12) 9W) = [91(1), 92(%2), - - -, g (Tm)]",

and each of the functions g,,(%,) is uncoupled from the others.
A simple choice of preconditioner is the block-diagonal matrix

(13) P:diag[Pl,Pz,...,PM]

in which each block P, uses an approximation to the Jacobian of the block function g,,. In
the nonlinear system case, where P is intended to approximate J directly, this means we
take

(14) P = Jin R 09 [OYm.

In the ODE case, P is intended to approximate I — «vJ for a scalar vy (see Eqn. (5)), so we
take

(15) Pp=1—~J,.

In either case, we use a difference quotient scheme to generate .J,, as a band matrix by
way of evaluations of g,,. It has upper and lower half-bandwidths mu and ml, defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The
difference quotient approximation is computed using mu + ml + 2 evaluations of ¢,,. The
parameters m1 and mu need not be the true half-bandwidths of the Jacobian of the local
block of g, if smaller values provide a more efficient preconditioner. Also, they need not be
the same on every processor. The solution of the complete linear system

(16) Pz=1b
reduces to solving each of the equations

(17) Pxm = bn
11

and this is done by banded LU factorization of P,, followed by a banded backsolve.

A software module within the PVODE package called PVBBDPRE, and an analogous
module within KINSOL called KINBBDPRE, implement this band-block-diagonal precon-
ditioner. To use it, the user must supply, in addition to the right-hand side function f, two
functions which the module calls to construct P. One is a function that performs just the
inter-processor communications needed for the evaluation of g,,, i.e. of components of ¥,, not
included in y,,. The other user function is one that computes g(y) in a distributed manner,
i.e. it computes each g, (%) on processor m, assuming that necessary communications have
been done. The data communicated in the first function must be stored in user-defined space
available to the second function.

In using this preconditioner module in conjunction with either PVODE or KINSOL, the
user’s calling program differs from that outlined in Sections 2.3 and 3.3 in three spots. First,
memory allocation and initialization associated with the preconditioner is done with a call
to PVBBDAlloc or KBBDAlloc following the call to CVodeMalloc or KINMalloc, respectively
(Step 5). This call includes the half-bandwidths to be used and the names of the two
associated user-supplied functions. Next, the call to CVSpgmr or KINSpgmr (Step 6) must
include the specific names, PVBBDPrecon and PVBBDPSol, or KBBDPrecon and KBBDPSol, as
the preconditioner routines to be called. Finally, a routine PVBBDFree or KBBDFree must be
called to free the PVBBDPRE/KINBBDPRE memory block. There are also a few optional
outputs associated with this module, made available by way of macros, giving workspace
sizes and function evaluation counters.

Similar block-diagonal preconditioners could be considered with different treatment of
the blocks P,,. For example, incomplete LU factorization or an iterative method could be
used instead of banded LU factorization.

Some work has been done by Chow [8] on a somewhat more powerful preconditioner,
also based on domain decomposition for PDE problems. In an algorithm called ABLU,
for Approximate Block LU factorization, the user supplies an approximate system function
g and an associated communication function, as before, but an approximation is implicitly
constructed to the elements of the Jacobian matrix which are neglected in the block-diagonal
preconditioner. The preconditioner linear system is posed in terms of separate blocks of
internal and interface variables, and the solution formulated in terms of the so-called Schur
Complement method. The Schur matrix is then approximated as a band matrix, again by
way of difference quotients. This algorithm has been implemented for use with PVODE or
KINSOL, but only in a preliminary form, with very little testing so far.

5. Support for Fortran Applications. Many of the users, and anticipated users, of
PVODE and KINSOL are working with existing Fortran application programs. Our packages
are written in C, but such users are reluctant to rewrite their programs in C (a major effort).
So in order to apply our software packages to these applications, we have provided a set
of interface routines that make the connections between the Fortran programs and the C
solvers with a minimum of changes to the application programs.

Mixing Fortran and C requires some compromises in portability, because compilers do
not hold to any one standard for the linkages across this language boundary. Moreover, our
interfaces must cross that boundary in both directions, since the Fortran user program calls

12

the C solver, and the C solver calls Fortran user routines. We have kept the difficulties to a
minimum by passing as arguments only scalars and arrays. This forces the Fortran user to
use fixed names for user-supplied routines, rather than arbitrary names which are passed to
the solver.

The remaining issue in the Fortran/C interfaces is the naming of externals in the linkages.
While there is no universal standard for this, there are only a few different conventions in
use by current compilers. In most cases, the Fortran compiler uses lower case names for all
externals, and appends an underscore to the names of C external routines and to the names of
compiled Fortran routines. On the other hand, Cray compilers use upper case names, with
no appended underscore. We have developed a scheme that accommodates these naming
conventions, with just a few machine-dependent lines of code. These are isolated in a single
header file, which defines a pair of parameters. The values of these parameters are then used
in other header files to set a sequence of dummy names to the appropriate actual names for
the various routines that are called across the Fortran/C language boundary.

5.1. Fortran interfaces for PVODE. We have written a package of interface routines
called FPVODE to support Fortran users of PVODE. This is a collection of C language func-
tions and header files which enables the user to write a main program and all user-supplied
subroutines in Fortran and to use the C language PVODE package. A small additional set
of interfaces called FPVBBD consists of interfaces needed by a Fortran application to use
the PVBBDPRE preconditioner package in combination with PVODE. The organization of
these modules is summarized here.

The following is a list of the functions which are callable from the user’s Fortran program,
along with the routine in PVODE that is called by each.

e FPVECINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR
module.

e FPVMALLOC interfaces with CVodeMalloc and is used to initialize CVode.

e FCVDIAG interfaces with CVDiag and is used when the diagonal approximate Jacobian
has been selected.

e FCVSPGMRO, FCVSPGMR1, FCVSPGMR2 interface with CVSpgmr when SPGMR has
been chosen as the linear system solver. These three interface routines correspond
to the cases of no preconditioning, preconditioning with no saved matrix data, and
preconditioning with saved matrix data, respectively.

e FCVODE interfaces with CVode.

e FCVDKY interfaces with CVodeDky and is used to compute a derivative of order £, 0 <
k < qu, where qu is the order used for the most recent time step. The derivative is
calculated at the current output time.

e FCVFREE interfaces with CVodeFree and is used to free memory allocated for CVode.

e FPVECFREEMPI interfaces with PVecFreeMPI and is used to free memory allocated
for MPI.

The user-supplied Fortran subroutines are listed below. As explained above, the names
of these Fortran routines are fixed and are case-sensitive.

e PVFUN which defines the function f, the right-hand side function of the system of
ODEs.

13

e PVPSOL which solves the preconditioner equation, and is required if preconditioning
is used.

e PVPRECO which computes the preconditioner, and is required if preconditioning in-
volves pre-computed matrix data.

A similar interface package, called FPVBBD, has been written for the PVBBDPRE
preconditioner module. It works in conjunction with the FPVODE interface package. The
three additional user-callable functions here are: FPVBBDIN, which interfaces to PVBBDAlloc
and CVSpgmr; FPVBBDOPT, which accesses optional outputs; and FPVBBDF, which interfaces to
PVBBDFree. The two user-supplied Fortran subroutines required, in addition to PVFUN to de-
fine f, are: PVLOCFN, which computes ¢(t, y); and PVCOMMFN, which performs communications
necessary for PVLOCFN.

5.2. Fortran interfaces for KINSOL. We have written a package of interface rou-
tines called FKINSOL to support Fortran users of KINSOL. This is a collection of C lan-
guage functions and header files which enables the user to write a main program and all
user-supplied subroutines in Fortran and to use the C language KINSOL package. A small
additional set of interfaces called FKINBBD consists of interfaces needed by a Fortran appli-
cation to use the KINBBDPRE preconditioner package in combination with KINSOL. The
organization of these modules is summarized here.

The following is a list of the functions which are callable from the user’s Fortran program,
along with the routine in KINSOL that is called by each.

e FPVECINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR
module.

e FPKINMALLOC interfaces with KINMalloc and is used to allocate memory for KINSol.

e FKINSPGMROO, FKINSPGMRO1, FKINSPGMR10, FKINSPGMR11, FKINSPGMR20,
FKINSPGMR21 interface with KINSpgmr, the linear solver. The three ending in 0
correspond to the cases of no preconditioning, preconditioning with no setup, and
preconditioning with setup, respectively. The three ending in 1 are the corresponding
routines in the case that a user-supplied KATIMES routine is supplied.

e FKINSOL interfaces with KINSol.

e FKINFREE interfaces with KINFree and is used to free memory allocated for KINSol.

e FPVECFREEMPI interfaces with PVecFreeMPI and is used to free memory allocated
for MPL.

The user-supplied Fortran subroutines are listed below. As explained above, the names
of these Fortran routines are fixed and are case-sensitive.

e KFUN which defines the function F', the nonlinear system function.

e KPSOL which solves the preconditioner equation, and is required if preconditioning
is used.

e KPRECO which computes the preconditioner, and is required if preconditioning in-
volves pre-computed matrix data.

e KATIMES which is the user-supplied Jacobian-vector multiply routine required if that
option is exercised.

A similar interface package, called FKINBBD, has been written for the KINBBDPRE
preconditioner module. It works in conjunction with the FKINSOL interface package. The

14

additional user-callable functions here are: FKINBBDINITO and FKINBBDINIT1 which in-
terface to KBBDAlloc and KINSpgmr; FKINBBDOPT, which accesses optional outputs; and
FKINBBDFREE, which interfaces to KBBDFree. The two user-supplied Fortran subroutines re-
quired, in addition to KFUN to define F', are: KLOCFN, which computes ¢(t,y); and KCOMMFN,
which performs communications necessary for KLOCFN.

The following is a summary of parallel usage of KINSOL, using the Fortran interface:

1. call mpi_init(...): Initialize MPL

2. call fpvecinitmpi(nlocal, neq, ier): Initialize the NVECTOR interface to MPI.
Here, nlocal and neq are the local and global sizes of the dependent variable arrays
to be used.

3. call mpi_comm size(...) or call mpi_comm rank(...): Optional calls to deter-
mine logical processor number and count.

4. call fpkinmalloc(...): Allocate space for KINSOL.

5. call fkinspgmr20(...): Set up the linear solver. The choice of linear solver in-
terface routine taken here, one of six possible, is for both a setup and solve precon-
ditioner routine to be supplied by the user in Fortran, but with default (internal)
Jacobian-vector product.

6. call fkinsol(...): Call KINSOL, through the Fortran interface.

7. call fkinfree: Free memory usage by KINSOL and its Fortran interface

8. call fpvecfreempi: Free MPI interface

6. Examples and Tests.

6.1. PVODE examples. We have used three example problems to demonstrate the
PVODE package. All are based on the treatment of a PDE by the Method of Lines.

The first example problem is a nonstiff ODE system derived from a single PDE in one
space dimension. The PDE is a prototypical diffusion-advection equation for v = u(t, x),

ou du ou

(18) o o2 T 0%,

for 0 < x <2, 0<t<5, and subject to homogeneous Dirichlet boundary conditions and
initial values, given by:

(19) u(t,0) = 0, wu(t,2)=0,
u(0,2) = z(2 — z)exp(2x).

A system of M ODEs is obtained by discretizing the x-axis with M + 2 grid points and
replacing the first and second order spatial derivatives in (18) with their standard central
difference approximations at all interior grid points. The values at the two boundaries are
eliminated by way of (19).

In the parallel implementation of this example, the function f(¢,y) is evaluated in a
distributed manner, with each processor owning a block of components of y and f. Prior
to the evaluation of f, message-passing calls are made to communicate the first and last
component of each block of y to the neighboring processor (except for boundary blocks, where

15

only one component is passed). Then each processor evaluates the three-point difference
expression corresponding to the right-hand side of (18) for its block of components of f.

The file pvnx.c is included in the PVODE package as the example program for this
problem. It uses the Adams (non-stiff) integration formula and functional iteration. The
problem is unrealistically small, but serves as a simple example for both the Method of Lines
and the use of PVODE.

The second example is a stiff system derived from a system of two coupled PDEs in
two space dimensions, involving diurnal kinetics, advection, and diffusion. The PDEs can
be written as

i 2 i i i

(20) %—i=Kh(;7(;+vg—z+%Ku(y)g—(;+RZ(c1,c2,t) (i=1,2),

The spatial domain is 0 < x < 20, 30 < y < 50. The time interval of integration is
[0, 86400], representing 24 hours measured in seconds. These equations represent a simplified
model for the transport, production, and loss of the oxygen singlet and ozone in the upper
atmosphere. Homogeneous Neumann boundary conditions are imposed on each boundary,
along with simple polynomial initial conditions. We omit the details, which can be found
elsewhere (see [3] and references cited there).

As before, we discretize the PDE system with central differencing, to obtain an ODE
system 4 = f(t,u) representing (20). A five-point stencil is involved in each finite difference
expression. For this example, we think of the processors as being laid out in a rectangular
array, and each processor being assigned a subgrid of size M XSUB x MY SUB of the
x — y grid. If the array of processors is NPEX x NPEY, then the overall grid size is
MX x MY with MX = NPEX - MXSUB and MY = NPEY - MY SUB. There are
2-MX - MY equations in this system of ODEs. To compute f in this setting, the processors
pass and receive information as follows. In each processor, the solution components on the
top and bottom rows of subgrid points, and those on the leftmost and rightmost columns
of subgrid points, are passed to the corresponding neighboring processor which borders the
given processor. Of course if the processor is on an edge of the processor array, then only a
subset of these communications is performed. Some care has been taken to implement these
steps with MPI calls which maximize efficiency and minimize the possibility of a deadlock.
In the terminology of MPI, the sequence of calls is: non-blocking receives, then blocking
sends, then waiting on non-blocking receives. Once all of the communications have been
done, the evaluation of all components of f can proceed.

The program for this example is provided in the file pvkx.c in the PVODE package.
The purpose of this code is to provide a more complicated example than the first one and
to provide a template for a stiff ODE system arising from a PDE system. The solution
method is BDF with Newton iteration and SPGMR. Preconditioning is on the left, and the
preconditioner matrix is the block-diagonal part of the Newton matrix, with 2 x 2 blocks.
The corresponding diagonal blocks of the Jacobian are saved each time the preconditioner
is generated, for re-use later under certain conditions.

The organization of the pvkx.c program deserves some comments. The right-hand side
routine f calls two other routines: ucomm, which carries out inter-processor communication;
and fcalc, which operates on local data only and contains the actual calculation of f(¢,u).

16

The ucomm function in turn calls three routines which do, respectively, non-blocking receive
operations, blocking send operations, and receive-waiting. All three use MPI, and transmit
data from the local u vector into a local working array uext, an extended copy of u. The
fcalc function copies u into uext, so that the calculation of f(t,u) can be done conveniently
by operations on uext only.

The third PVODE example uses the same ODE system as the second, but a slightly
different solution method. It uses the PVBBDPRE preconditioner module to generate a
band-block-diagonal left preconditioner. For the half-bandwidths m1 and mu supplied to
PVBBDPRE, we experimented with values ranging from 1 up to the true value of half-
bandwidths of the diagonal Jacobian blocks, namely 2 - M XSUB. The most cost-effective
choice was a value of m1 = mu = 2, giving a band matrix that is only slightly wider than
the block-diagonal matrix of the second example. The program for this example is provided
as pvkxb.c in the PVODE package.

We have also used a simple diagonal ODE system in order to validate the Fortran/C
interfaces. The system is given by 1; = —auy; for 1 =1,..., N. We supply example Fortran
programs for three cases:

e a nonstiff case, with « = 10/N;

e a stiff case, with o = 10, and a diagonal preconditioner that includes the correct
Jacobian element for positions 4 through N only; and

e the same stiff case, solved with the PVBBDPRE module (with half-bandwidths set
to zero).

6.2. KINSOL examples. Four sample application programs have been written solving
the same simple, nonlinear diagonal problem. They solve the system with the function

(21) F(u) = (F(w) , F(w) =)= (i=1,...,N).

This problem was solved using a serial implementation with file diags2.c, using a parallel
implementation with file diagp2. c, using a parallel implementation via the Fortran interface
package with file diagp2f . f, and using the parallel/Fortran interface with the Block-Banded-
Diagonal preconditioner package in file diagbbdf . f.

A more demanding example is that of the so-called predator-prey PDE system. This
example problem is a model of a multi-species food web [2], in which mutual competition
and/or predator-prey relationships in a spatial domain are simulated. For this problem the
dependent variable c replaces the generic dependent variable v used above. Here we consider
a model with s = 2p species, where both species 1,---,p (the prey) and p+ 1,---,s (the
predators) have infinitely fast reaction rates:

(22) O:fz(xayac)—i_dl(cfzw—i_cz/y) (121’27:17)7
0= filz,y,c) +di(ct,+¢),) (i=p+1,---,5),
with

i=1
17

The interaction and diffusion coefficients (a;j, b;, d;) could be functions of (z,y) in general.
The choices made for this test problem are for a simple model of p prey and p predator
species, arranged in that order in the vector c. We take the various coefficients to be as
follows:

Qi = -1 (all ’L)
(24) aij =—05-10"% (i <p,j>p)
ai; = 10* (i > p,j < p)

(all other a;; = 0),

bi =bi(z,y) = (1+azy) (i <p)
(25) { b; =bi(z,y) = -1+ azy (i >p)
and
di=1 (i<p)
(26) { d; =05 (i fp).

The domain is the unit square 0 < z,y < 1. The boundary conditions are of Neumann
type (zero normal derivatives) everywhere. The coefficients are such that a unique stable
equilibrium is guaranteed to exist when « is zero [2]. Empirically, for (22) a stable equilibrium
appears to exist when « is positive, although it may not be unique. In this problem we take
« = 1. The initial conditions used for this problem are taken to be constant functions by
species type. These satisfy the boundary conditions and very nearly satisfy the constraints,
given by

¢ = 116347 (i=1,---,p)
¢ = 34903.1 (i=p+1,---,s).

The PDE system (22) (plus boundary conditions) was discretized with central differenc-
ing on an L x L mesh, with the resulting nonlinear system has size N = sL?.

6.3. PVODE testing. The stiff example problem described in Section 6.1 has been
modified and expanded to form a test problem for PVODE. This work was largely carried
out by M. Wittman and reported in [17].

To start with, in order to add realistic complexity to the solution, the initial profile for
this problem was altered to include a rather steep front in the vertical direction. Specifically,
in the initial profile, the polynomial dependence on y was replaced by the function

(27) B(y) = .75 + .25 tanh(10y — 400).

This function rises from about .5 to about 1.0 over a y interval of about .2 (i.e. 1/100 of
the total span in y). This vertical variation, together with the horizonatal advection and
diffusion in the problem, demands a fairly fine spatial mesh to achieve acceptable resolution.
In addition, an alternate choice of differencing is used in order to control spurious os-
cillations resulting from the horizontal advection. In place of central differencing for that
term, a biased upwind approximation is applied to each of the terms dc'/0x.
18

With this modified form of the problem, we performed tests similar to that described
above for the example. Here we fix the subgrid dimensions at MXSUB = MYSUB = 50, so that
the local (per-processor) problem size is 5000, while the processor array dimensions, NPEX
and NPEY, are varied. In one (typical) sequence of tests, we fix NPEY = 8 (for a vertical mesh
size of MY = 400), and take three cases: NPEX = 8 (MX = 400), NPEX = 16 (MX = 800), and
NPEX = 32 (MX = 1600). Thus the largest problem size N is 2 - 400 - 1600 = 1, 280, 000. For
these tests, we also raise the maximum Krylov dimension, max1, to 10 (from its default value
of 5).

For each of the three test cases, the test program was run on a Cray-T3D (256 processors)
with each of three different message-passing libraries:

e MPICH: an implemenation of MPI on top of the Chameleon library [12]
e EPCC: an implemenation of MPI by the Edinburgh Parallel Computer Centre [7]
e SHMEM: Cray’s Shared Memory Library

The following table gives the run time and selected performance counters for these 9 runs.
In all cases, the solutions agreed well with each other, showing expected small variations with
grid size. In the table, M-P denotes the message-passing library, RT is the reported run time
in CPU seconds, nst is the number of time steps, nfe is the number of f evaluations, nni is
the number of nonlinear (Newton) iterations, nli is the number of linear (Krylov) iterations,
and npe is the number of evaluations of the preconditioner.

NPEX M-P RT nst nfe | nni nli | npe
8 MPICH | 436. | 1391 | 9907 | 1512 | 8392 | 24
8 EPCC | 355. | 1391 | 9907 | 1512 | 8392 | 24
8 | SHMEM | 349. | 1999 | 10,326 | 2096 | 8227 | 34
16 | MPICH | 676. | 2513 | 14,159 | 2583 | 11,573 | 42
16 EPCC | 494. | 2513 | 14,159 | 2583 | 11,573 | 42
16 | SHMEM | 471. | 2513 | 14,160 | 2581 | 11,576 | 42
32 | MPICH | 1367. | 2536 | 20,153 | 2696 | 17,454 | 43
32 EPCC | 737. | 2536 | 20,153 | 2696 | 17,454 | 43
32 | SHMEM | 695. | 2536 | 20,121 | 2694 | 17,424 | 43

TABLE 3
PVODE test results vs problem size and message-passing library

Some of the results were as expected, and some were surprising. For a given mesh
size, variations in performance counts were small or absent, except for moderate (but still
acceptable) variations for SHMEM in the smallest case. The increase in costs with mesh size
can be attributed to a decline in the quality of the preconditioner, which neglects most of the
spatial coupling. The preconditioner quality can be inferred from the ratio nli/nni, which
is the average number of Krylov iterations per Newton iteration. The most interesting (and
unexpected) result is the variation of run time with library: SHMEM is the most efficient,
but EPCC is a very close second, and MPICH loses considerable efficiency by comparison, as
the problem size grows. This means that the highly portable MPI version of PVODE, with
an appropriate choice of MPI implementation, is fully competitive with the Cray-specific

19

version using the SHMEM library. While the overall costs do not prepresent a well-scaled
parallel algorithm (because of the preconditioner choice), the cost per function evaluation is
quite flat for EPCC and SHMEM, at .033 to .037 (for MPICH it ranges from .044 to .068).

For tests that demonstrate speedup from parallelism, we consider runs with fixed problem
size: MX = 800, MY = 400. Here we also fix the vertical subgrid dimension at MYSUB = 50 and
the vertical processor array dimension at NPEY = 8, but vary the corresponding horizontal
sizes. We take NPEX = 8, 16, and 32, with MXSUB = 100, 50, and 25, respectively. The
runs for the three cases and three message-passing libraries all show very good agreement
in solution values and performance counts. The run times for EPCC are 947, 494, and 278,
showing speedups of 1.92 and 1.78 as the number of processors is doubled (twice). For the
SHMEM runs, the times were slightly lower and the ratios were 1.98 and 1.91. For MPICH,
consistent with the earlier runs, the run times were considerably higher, and in fact show
speedup ratios of only 1.54 and 1.03.

7. Applications.

7.1. Application to Tokamak Edge Plasma Models. We are working with LLNL’s
Magnetic Fusion Energy Division on parallel software for 2-D tokamak plasma simulation.
The MFE community’s primary tokamak edge model, UEDGE, now uses three of our solvers
in its sequential version: the nonlinear algebraic system solver NKSOL, the ODE solver
VODPK, and the DAE solver DASPK. A preliminary parallel version of UEDGE using both
PVODE and KINSOL has been completed [14, 15]. It makes use of the band-block-diagonal
preconditioner modules in combination with both PVODE and KINSOL, and also uses our
Fortran interface packages.

Development and testing have now been done for two cases: (a) single-region problems
and (b) multiply-connected domains that arise in the tokamak geometry. The tests show
that the algorithm is behaving correctly. Work is now being done to document the scaling of
the problem on larger meshes and improving the user interface with the Cray-T3E, since the
previously-used BASIS system is not available there. When fully developed, this software
should enable problem sizes sufficient to resolve boundary features and impurity effects that
are not adequately resolved now. In addition, this MFE group is working to develop a
parallel version of their 3-D plasma fluid turbulence code, BOUT, by utilizing PVODE.

7.2. Application to a Variably Saturated Flow Model. We are working with
Carol Woodward, CASC, in applying KINSOL to problems in modeling groundwater flow
[18]. Specifically, a nonlinear Richards’ equation representing the pressure field in a vari-
ably saturated three-dimensional medium is treated by implicit differencing in time and
finite differences in space. The resulting nonlinear algebraic system is solved with KINSOL.
Preconditioning is done with a multigrid algorithm applied to the symmetric part of the
Jacobian.

7.3. Other Applications. The parallel preconditioned GMRES solver SPGMR, used
within PVODE and KINSOL is suitable as a general-purpose linear system solver. As such,
it has been used in a simulation of a nonlinear, steady-state, plasma fluid problem. It has
also been used in the three-dimensional Boltzmann transport solver Ardra.

20

[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]

REFERENCES

P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, STAM
J. Sci. Stat. Comput., 10 (1989), pp. 1038-1051.

P. N. Brown, Decay to Uniform States in Food Webs, STAM J. Appl. Math., 46 (1986), 376-392.

P. N. Brown and A. C. Hindmarsh, Reduced Storage Matriz Methods in Stiff ODE Systems, J. Appl.
Math. & Comp. 31 (1989), pp. 40-91.

P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations, STAM J. Sci Stat.
Comput., 11 (1990), pp. 450-481.

George D. Byrne, Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting, in Computa-
tional Ordinary Differential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford University Press,
Oxford, 1992, pp. 323-356.

George D. Byrne and Alan C. Hindmarsh, User Documentation for PVODE, an ODE Solver for Parallel
Computers, LLNL informal document, in progress, 1998.

K. Cameron, L. J. Clarke, and A. G. Smith, Using MPI on the Cray T3D, Edinburgh Parallel Com-
puting Centre informal document, November 1995.

E. T. Chow, private communication.

S. D. Cohen and A. C. Hindmarsh, CVODE User Guide, Lawrence Livermore National Laboratory
report UCRL-MA-118618, September 1994.

Scott D. Cohen and Alan C. Hindmarsh, CVODE, a Stiff/Nonstiff ODE Solver in C, Computers in
Physics, 10, No. 2 (1996), pp. 138-143.

S. Eisenstat and H. Walker, Choosing the Forcing Terms in an Inexact Newton Method, STAM J. Sci.
Comp., 17 (1996), pp. 16-32.

W. D. Gropp and E. Lusk, A Test Implementation of the MPI Draft Message-Passing Standard, Tech-
nical Report ANL-92/47, Argonne National Laboratory, December 1992.

William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI Portable Parallel Programming with
the Message-Passing Interface, The MIT Press, Cambridge, MA, 1994.

T.D. Rognlien, X. Xu, P. N. Brown, A. C. Hindmarsh, and A. G. Taylor, Parallelization of an Edge
Plasma Transport Code via Domain Decomposition, Bull. Am. Phys. Soc., Vol. 42, 1584 (1997)
(Abst. for Int. Conf. on Comp. Phys., Aug. 25-28, 1997, Santa Cruz, CA); LLNL Report UCRL-
JC-127375abs.

T. D. Rognlien, X. Xu, A. C. Hindmarsh, P. N. Brown, and A. G. Taylor, Algorithms and Results for a
Parallelized Fully-Implicit Edge-Plasma Transport Code, Abst. for Int. Conf. Num. Sim. Plasmas,
Feb. 10-12, 1998, Santa Barbara, CA; LLNL Report UCRL-JC-129223abs.

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsym-
metric Linear Systems, STAM J. Sci. Stat. Comp. 7 (1986), pp. 856—869.

Michael R. Wittman, Testing of PVODE, a Parallel ODE Solver, Lawrence Livermore National Lab-
oratory report UCRL-ID-125562, August 1996.

Carol S. Woodward, A Newton-Krylov-Multigrid Solver for Variably Saturated Flow Problems,
Lawrence Livermore National Laboratory report UCRL-JC-129371, January 1998.

21

