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USING KRYLOV METHODS IN THE SOLUTION OF LARGE-SCALE
DIFFERENTIAL-ALGEBRAIC SYSTEMS*

PETER N. BROWN , ALAN C. HINDMARSH! AND LINDA R. PETZOLD?

Abstract. In this paper we describe a new algorithm for the solution of large-scale systems of differential-
algebraic equations. It is based on the integration methods in the solver DASSL, but instead of a direct method
for the associated linear systems which arise at each time step, we apply the preconditioned GMRES iteration in
combination with an Inexact Newton Method. The algorithm, along with those in DASSL, is implemented in a new
solver called DASPK. We outline the algorithms and strategies used, and discuss the use of the solver. We develop
and analyze some preconditioners for a certain class of DAE systems, and finally demonstrate the application of
DASPK on two example problems.

1. Introduction. This paper is concerned with the solution of large systems of differential-algebraic equations
(DAEs). We write the system in the general form

(1.1) F(t,y,y') =0,

where F, y, and y’ are N-dimensional vectors, and a consistent set of initial conditions y(to) = yo, ¥’ (t0) = y0 is

! The starting point for this work is the solver DASSL [20, 3]. In that code, the linear systems which arise

given.
at each time step are solved with dense or banded direct linear system solvers. For large problems, this is highly
restrictive. Instead we consider the preconditioned GMRES (Generalized Minimal Residual) iterative method [21].
For large-scale systems including method of lines solution of partial differential equations in two and three dimensions,
this method can be quite effective, combined with a suitable preconditioner.

A number of previous papers [17, 11, 18, 7] have dealt with the solution of large-scale systems of ODEs, y' =
f(t,y), via backward differentiation formulas for time stepping in combination with preconditioned Krylov methods
for solving the linear systems at each time step. A solver called LSODPK that is based on these methods was
developed by Brown and Hindmarsh, and is described in [7]. A similar solver called VODPK, developed by Brown,
Byrne, and Hindmarsh, is described in [9]. Chronopoulos and Pedro [12] have also developed a version of DASSL
which includes iterative methods. However, their code uses completely different strategies for tests such as Newton
convergence and linear iteration convergence, and their work does not address the issues which are specific to DAEs
(as opposed to ODEs) that we focus on here.

In this paper we extend the work on preconditioned Krylov methods for ODEs to DAEs. While many of the
considerations remain the same, the solution of DAEs by this approach introduces some additional questions and
difficulties. In particular, a preconditioner is always needed for DAEs (i.e. DAEs which are not ODEs). Precondi-
tioners can be developed for classes of DAE systems arising with a particular structure. Here we develop and analyze
preconditioners for a certain class of stiff DAE systems.

A new code, DASPK, has been developed based on this approach. We begin in Section 2 by describing the code
in some detail, outlining especially those strategies and considerations which differ from the ODE case. In Section
3 we describe the use of this code. In Section 4 we develop and analyze a class of preconditioners for DAEs arising
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! By a consistent set of initial conditions, for the systems under consideration we mean that (1.1) should be satisfied
at the initial time. For a more complete description of what it means for an initial condition to be consistent, see [3].



from reaction-diffusion systems. Finally, in Section 5 we present some numerical experiments applying the new code
and preconditioners to the solution of several large-scale problems.

2. Overview of the DASPK Algorithm. In DASPK, we have combined the time-stepping methods of
DASSL with the preconditioned iterative method GMRES, for solving large-scale systems of DAEs of the form (1.1).

Here we describe the algorithm.

2.1. Time-stepping. The underlying idea for solving DAE systems is due to Gear [16] and consists of replacing
the solution and derivative in (1.1) by difference approximation, and solving the resulting equation for the solution
at the current time ¢, using Newton’s method. For example, replacing the derivative by the backward difference in
(1.1), we obtain the first order formula

(2.1) F('tnayn:%) =0,

where h,, =t, —t,—1. This equation is then solved at each time step using a modified Newton method,
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where m is the iteration index. As in DASSL, DASPK uses the backward differentiation formulas (BDF) of orders
1 through 5 to approximate the derivative in (1.1). On every step, it chooses the order and stepsize based on the
behavior of the solution. The integration methods and strategies for time-stepping are virtually identical to those in
DASSL, and are described in detail in [3]. The equation to be solved on each time step is

(2'3) F (tnaynv iﬂ) =0,

where py, = Zf:o a;yn—i and a;, 1 =0,1,...,k are the coefficients of the BDF method.

2.2. Nonlinear system solution. It is important to solve the nonlinear equation (2.3) efficiently. To simplify

notation, we can rewrite this equation as
(24) F(t,y,ay+5) =0,

where a = ao/hs is a constant which changes whenever the stepsize or order changes, 3 is a vector which depends on
the solution at past times, and ¢, y, , B are evaluated at t,. To simplify the discussion, we will sometimes refer to
the above function simply as F'(y). Both DASPK and DASSL solve this equation by a modified version of Newton’s
method,
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(2.5) y Yy c<a6y’+_6y> F(t,y™, ay™ + B)

Both solvers must therefore deal in some way with the iteration matrix

(2.6) A= aa—y, + s

The direct methods within DASPK are virtually identical to those in DASSL for the treatment of (2.4). In that
case, the iteration matrix (2.6) is computed and factored, and is then used for as many time steps as possible. By
contrast, in the iterative methods option of DASPK, a preconditioner matrix P, which is an approximation to A that
leads to a cheap linear system solution, is computed and preprocessed and used for as many time steps as possible.
As we will see in the examples below, it is often possible to use a preconditioner over more steps than it would be
possible to keep an iteration matrix in the direct option, because the iterative methods do the rest of the work in

solving the system. One of the powerful features of the iterative approach is that it does not need to compute and
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store the iteration matrix A explicitly.?2 This is because the GMRES method, as we will see below, never actually
needs this matrix explicitly. Instead, it requires only the action of A times a vector v. In DASPK, this matrix-vector

product is approximated via a difference quotient on the function F in (2.4)

@.7) Av = F(y)o ~ Dby Fovaly + mJ)0+ B) - F(t,y,ay+B)
The GMRES algorithm requires products Av in which v is a vector of unit length (the norm is a weighted norm
based on the user-defined error tolerances as described in Section 2.3.3) and y is the current iterate. In DASPK, o is
taken to be 1, as explained in Section 2.3.3. We note that, because y is current in (2.7), this amounts to taking a full
Newton iteration in the iterative option of DASPK (rather than modified Newton, as in DASSL and the direct option
of DASPK). In fact, for some highly nonlinear problems we have seen the iterative option in DASPK outperform the
direct option in terms of time steps, corrector failures, etc., apparently for this reason.

In general, the value of @ when A (or P) was last computed is different from the current value of a. We will
denote the ‘old’ value of a by &. If a is too different from & in the direct method, then (2.5) may not converge. The

constant ¢ in (2.5) is chosen to speed up the convergence in the direct method when a # &, and is given by

2

(2.8) c= T+a/a"

See [3] for a derivation. For the iterative method, while the preconditioner may be based on an old &, the linear
system to be solved is based on the current ¢, so in this case ¢ = 1.

The rate of convergence p of (2.5) is estimated whenever two or more iterations have been taken, by

m+1 _ . m 1/m

lly* — vl
It is important to note at this point that all norms here are weighted norms, in which the weights depend on the
error tolerances specified by the user, so as to account for the scaling of the problem; the details are given in the next
subsection. The iteration is taken to have converged when
P

(2.10) T

ly™ " — ™| < 0.33.

The basis for this test is that if the iteration is converging linearly at a rate p to y*, then

_r_
1—p

m+1 m+1l

(2.11) [y Yyl =y Y|l

If p > 0.9 or m > 4, and the iteration has not yet converged, then the stepsize is reduced, and/or an iteration matrix
based on current approximations to ¥y, 3', and « is formed, and the step is attempted again. If the difference between
the predictor and the first correction is very small (for the direct solver, this is relative to roundoff error in y; for the
iterative solver, it is relative to the accuracy requested in solving the linear system), the iteration is taken to have
converged (because the initial correction is so close that it is impossible to get a good rate estimate). The heuristic
constants .33, .9, and 4 here have been taken from the DASSL algorithm without change and are discussed in [3].
For the iterative methods, convergence tests such as (2.10) need to be justified, because the Newton iterates are
not computed exactly but instead with a relatively large error which is due to solving the linear system inexactly. The
test (2.10) can be justified, at least to some extent, by considering the Newton/GMRES method in the framework of
the theory of Inexact Newton Methods [14]. In this framework, the Newton iteration for F(y) = 0, including errors

r™ due to solving the linear system inexactly, is written as
(2.122) Flly™oy™ = —F@y™)+r"
(2.12b) y™tt o=y ey

2 Depending on the preconditioner, it may need to compute and store a preconditioner matrix explicitly. However,
this matrix is hopefully much cheaper to generate and to store than the actual iteration matrix.
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Theorem 2.2 in Brown and Hindmarsh [6] justifies a convergence test based on rate of convergence for the inexact
Newton iteration, provided the residuals r™ satisfy ||r™|| < n||F(y™)||, for n < 1. However, as in the case of ODEs,
we prefer to terminate the linear iteration based on a condition like ||[r™|| < 4. In this case, it can be argued
heuristically as in [6] that the test is still justified, provided that § << e/, where ¢ is the tolerance for the final
computed Newton iterate, [|y™ ' —y*|| < e, and A = ||(F')"*(y*)||. Now, this is almost what we need, except that
for most DAEs (and stiff ODEs), A is likely to be quite large, which would seem to mandate a quite conservative test
for the linear iteration. To see how the theory can be used to justify a less conservative test, multiply F(y) = 0, and
hence (2.12a), by P!, where P is the preconditioner matrix described below. This changes nothing in terms of the
Newton iterates or the final solution for y*. Now, assuming that the preconditioner is a good approzimation to F', in
the sense that ||[P~'F'|| = O(1), the theory and heuristic arguments in [6], applied to P~'F instead of F, justify a
termination criteria for the Newton iteration based on the rate of convergence, provided the preconditioned residuals
for the linear iteration satisfy ||[P~'r™|| < 4, where § << e. In DASPK, we take € = .33, and take § = .05¢ as the
default tolerance for solving the linear iteration (the constant §/e can be adjusted optionally by the user as described
in Section 3). The norms used are weighted norms based on the user-defined error tolerances and are described in
Section 2.3.2. We note that another desirable property of these tests is that they are invariant under scalings of the
DAE (i.e. multiplying F on the left by some arbitrary matrix), provided the preconditioner has also been scaled
accordingly.

In contrast to the ODE solvers LSODPK][7] and VODPK][9], which use preconditioned Krylov methods with left
and/or right preconditioning, the DASPK solver allows only left preconditioning. The reason has to do with a basic
difference between ODEs and DAEs. For a DAE system defined by F(t,y,y') = 0, the components of the vector F
need not have any relation to those of y. For example, the two vectors need not have the same physical units in
corresponding components. If a left preconditioner P; and a right preconditioner P> are allowed in the solution of
the linear system Az = b, where A = F’ and b is a value of —F, then the Krylov method in effect deals with the
matrix P, ' AP; ' and with residual vectors P;"'r (r = b— Az), and performs a convergence test on weighted norms
of those vectors. But consistent choices of P; and P are possible, with Py P> = A, for which P, 1y does not have the
same units as y. Then norms of the preconditioned residuals Pflr are meaningless as a measure of the quality of the
current approximate solution vector z. In contrast, if P, = I and P is a consistent approximation to A, then P, Ly
has the same units as y in each component, and the convergence test in the Krylov algorithm, with the same weighted
norm as used in the local error test, is completely consistent. Moreover, that convergence test is invariant under a
change of scale in either the function F or the vector y (provided the absolute tolerances are rescaled consistently if
y is). This consistency and scale invariance are not possible with preconditioning either on the right only or on both
sides.

In DASPK, the iterative option requires the user to provide a preconditioner P. This is in part because the
Newton iteration test, and hence ultimately the code reliability, is not justified without a halfway-reasonable precon-
ditioner. It is also because any nontrivial DAE needs a preconditioner. Even a ‘nonstiff’ DAE needs a preconditioner,
to approximate the Jacobian of the constraint matrix. Also, it is known that the iteration matrix for any nontrivial
DAE becomes more and more ill-conditioned as the stepsize is reduced [3]. Therefore, the preconditioner may need
to rescale; scalings for some common classes of DAEs are discussed in [3]. In the case that the DAE is really an ODE,
with F(t,y,y') = v’ — f(t,y), the preconditioner could be taken as P = a * I, although even for ODEs it is often

better to provide a nontrivial preconditioner [7].
2.3. Linear system solution. Solving (2.5) requires the solution of a linear system
(2.13) Az =0
at each Newton iteration, where A is the N x N iteration matrix in (2.6), = y™™' — y™ is an N-vector, and
b= —cF(t,y™,ay™ + B) is an N-vector.
In the direct option, this linear system is solved by either dense direct or banded direct Gaussian elimination

with partial pivoting via LINPACK [15]. The iteration matrix is either provided by the user, or computed via finite

difference quotients, as described in [3].



2.3.1. Description of GMRES algorithm. In the case of iterative methods, the linear system (2.13) is
solved by the preconditioned GMRES iterative method [21]. Depending on the options chosen, the method may be
either the complete or the incomplete GMRES method, and it may or may not include restarting.

GMRES is one of a class of Krylov subspace projection methods [22]. The basic idea of these methods is as
follows. If zg is an initial guess for the solution, then letting = xo + 2, we get the equivalent system Az = ro, where
ro = b — Amg is the initial residual. We choose z = z in the Krylov subspace K; = span{ro, Arg,---, A'""1ry} . For
the GMRES algorithm, z;, hence x; = o + 2; is specified uniquely by the condition

b — Azy||]o = min ||b — Az||2 (= min ||ro — Az||2).
zewo+K) 2€K;
Here, || - ||2 denotes the Euclidean norm.
GMRES uses the Arnoldi process [1] to construct an orthonormal basis of the Krylov subspace K;. This results

in an N x I matrix V; = [v1,---,v] and an [ x [ upper Hessenberg matrix H; such that
H =V;"AV; and V;TVi = I, (=1 x [ identity matrix).

If the vectors 7o, Aro, - - -, Alrg are linearly independent, so that the dimension of Kj,; is | + 1, then the matrices
Vigr = [v1, -, vi41] and H; € RUTVX defined by

H = [ gf ], where r = (0,--+,0,hi11,)" € R'

satisfy
AV; = Viy1 Hi.

Furthermore, letting z = Vjy, we find that [jro — Az||> = ||Be1 — Hyyl|2 , where 8 = ||ro]|2 and e is the first standard
unit vector in R'*!. The vector y = y; minimizing this residual is computed by performing a QR factorization of H,
using Givens rotations. Then the GMRES solution is z; = zo + Viy;. As noted by Saad and Schultz [21], this QR
factorization can be done progressively as each column appears, and one can compute the residual norm ||b — Azi||2
without computing x; at each step. If the sin§ elements of the Givens rotations are denoted by s; (j = 1,---,1),

then one obtains
(2.14) ||b—A(L‘l||2 :ﬂ|81---81|.

Combining these various parts gives the following algorithm for the basic (complete) GMRES method. Here
lmaz and § are given parameters.
Algorithm 2.1 (GMRES)
1. Compute 7o = b — Azo and set v1 = ro/||rol|2 -
2. Forl=1, -+, lmas do:
(a) Form Av; and orthogonalize it against v, ---,v; via

1
wiy1 = Av — E hiwi, hag = (Avi,v;)
i=1

hiva = |lwiall2

Vi1 = Wig1/higry.

(b) Update the QR factorization of Hj .
(c) Use (2.14) to compute p; = ||roll2 - |s1--- 81| = ||b — Az]|2 -
(d) If p; <&, go to Step 3. Otherwise, go to (a).

3. Compute z; = o + Viyi, and stop.



In the above algorithm, if the test on p; fails, and if | = ;4. iterations have been performed, then one has the
option of either accepting the final approximation z; or setting zo = z; and then going back to Step 1 of the algorithm.
This last procedure has the effect of “restarting” the algorithm. When used with the default input options, DASPK
does such restarts when necessary to achieve convergence.

As [ gets large, much work is required to make v;41 orthogonal to all the previous vectors vi,- -, v;. This has
motivated the development of an incomplete version of GMRES (denoted by IGMRES), which differs from Algorithm
2.1 only in that the sum in Step 2(a) begins at 1 = 4o = max(1,/ — p + 1) instead of at ¢ = 1. An inexpensive
evaluation of the residual norm is still possible, with the insertion of another factor in (2.14). Details are given in [7].
In many cases, the incomplete algorithm can give significant savings over the complete one. For example, when A is
symmetric (or nearly so), H; is tridiagonal (or nearly so), and one can take p = 2. In DASPK, the default iterative
method is (complete) GMRES, but IGMRES is available with the use of optional input parameters.

When lmee = N, Saad and Schultz [21] have given a convergence analysis of Algorithm 2.1 that shows the
GMRES iterates converge to the true solution of (2.10) in at most N iterations. While GMRES is guaranteed to
converge, it can exhibit poor performance, especially when used without preconditioning. This is commonly referred
to as stagnation. In such cases, there is little or no reduction in the residual norm p; for several iterates. In [7],
a dramatic example of stagnation is given wherein p; = po for all I < N, and py = 0. When l;pq, < N and A is
positive definite, the restarted version of GMRES is always guaranteed to converge, although it also can stagnate.
For indefinite matrices, the restarted GMRES method can sometimes fail to converge. For more details, see [5], [7]
and [21].

2.3.2. Scaling and preconditioning. Realistic DAE problems require the inclusion of scale factors, so that
all vector norms become weighted norms in the problem variables. However, even the scaled iterative methods seem
to be competitive only for a fairly narrow class of problems, namely ODEs characterized mainly by tight clustering
in the spectrum of the system Jacobian. Thus for robustness, it is essential to enhance the methods further. As in
other contexts involving linear systems, preconditioning of the linear iteration is a natural choice. In what follows,

the use of scaling and preconditioning is reviewed.

Scaling
The user of DASPK must provide parameters that define error tolerances to be imposed on the computed

solution. These are relative and absolute tolerances RTOL and ATOL such that the combination

w; = RTOL;

yi—1| + ATOL;
is applied as a scale factor for component y* during the time step from #,—; to t,. Specifically, a weighted root-mean-
square norm

N

1/2
lellw s = lNl Z(mi/wi)Z]

1

is used on all error-like vectors. Thus if we define a diagonal matrix
D = v/ Ndiag(wy, - - -, wn),
we can relate this to an £ norm:
llzllwrrvs =D~ x>

Because D contains the tolerances, the local error test on a vector e of estimated local errors is simply |le||lwrms < 1.
The linear system in (2.13) can be restated in scaled form in terms of D™'z = # and D™'b = b. Likewise, the

nonlinear system F(y) = 0 can be restated in a scaled form F(3) = 0.
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We note that, while DASSL allows the user to replace the norm subroutine, DASPK does not allow this. This
is because a scaled Ls norm is needed in the implementation of the GMRES algorithm. However, DASPK does
allow a user-replaceable subroutine to define the weights in the norm. (The default is to set the weights according
to the tolerances RTOL and ATOL via EWT(I) = RTOL(I)*ABS(Y(I)) + ATOL(I)). We recommend that this be
attempted only after careful thought and consideration.

Preconditioning

When a basic iteration fails to show acceptable convergence on a given problem, preconditioning is often benefi-
cial, especially when the cause of the slow convergence can be identified with one or more parts of the problem which
are (individually) easier to deal with than the whole problem. Generally, preconditioning in an iterative method for

solving Az = b means applying the method instead to the equivalent system
(2.15) (P™'A)x =P 'b, or Az =1b,

where P is chosen in advance. The preconditioned problem is easier to solve than the original problem provided that
(1) linear systems Px = c can be solved economically, and (2) P is in some way close to A. Condition (1) is essential
because carrying out the method on Az = b clearly requires evaluating vectors of the form P~'¢c, at the beginning
of the iteration, during each iteration, and at the end. Condition (2) is less well-defined, but means simply that the
convergence of the method for Az = b should be much better than for Az = b, because A is somehow close to the
identity matrix (for which convergence is immediate).

It is essential that the scaling of the linear system (discussed above) be retained in the preconditioned methods.
Since the scaling matrix D is based on the tolerance inputs to the ODE solver, D! can be thought of as removing
the physical units from the components of z so that the components of D'z can be considered dimensionless and
mutually comparable. On the other hand, the matrix A = adF /8y’ + OF /8y is not similarly scaled, and so, because

P is based on approximating A, the matrix
A=P'A

is also not similarly (dimensionally) scaled. More precisely, it is easy to show that if the (¢, j) elements of P each have
the same physical dimension as that of A, i.e. the dimension of F;/y;, then the (4, j) element of A has the dimension
of y; /y;. Similarly, for the vectors « and b, the i** component of each has the same physical dimension as that of y;.
It follows that the diagonal scaling D! should be applied to = and b in the same way that it was applied to z and b

without preconditioning. Thus we change the system (2.15) again to the equivalent scaled preconditioned system
(2.16) (D™'AD)(D™'z) = (D™'b), or A% = b.

Combining the two transformations, we have

(2.17) A=D7'P7'AD, 5=D"'z, b=D"'P7'b.

2.3.3. Implementation details. In implementing the GMRES method in DASPK, many of the algorithmic
issues that arise are the same as for the ODE case. We have carried over the treatment of these matters from
LSODPK [7]. Below is a summary of those details.

e DASPK takes zo = 0, having no choice readily available that is clearly better.
e The scaling is incorporated in an explicit sense, storing vectors ¥; that arise in the method as it stands,
rather than unscaled vectors Dv; = v;.

e DASPK uses a difference quotient representation

Jv = [F(t,y + ov,a(y +ov) + B8) — F(t,y,ay + B)]/o-



e DASPK takes o = 1 because ||v||wrms = 1. Thus the perturbation vector v can be regarded as a small
correction to y, since its WRMS norm (= 1) is a value that is accepted for local errors in y in the local error
test. It is possible that other choices for o might improve the truncation error in this difference quotient,
but we have not studied this issue.

e The modified Gram-Schmidt procedure is used for orthogonalizing basis vectors.

o Failures to pass the convergence test in GMRES are handled in the context of the integration algorithm. If
GMRES failed to converge but did reduce the residual norm, then it is restarted. On a convergence failure
that did not reduce the residual norm, the time step is retried with JAC called to update matrix data used
(if any) if that data is not current, or else the step size is first reduced (by a factor of .25) before the step
retried. The user’s PSOL routine can also return a failure flag that signals either an immediate halt or a
retry of the step.

e The convergence test constant § used as a bound on the residuals ||b — Az:||lwrms is taken to be § = .05¢,
where € = .33 is the tolerance on the nonlinear iteration in (2.10).

We can now state our algorithm for scaled preconditioned versions of the GMRES method. This is given for
arbitrary xo, for the sake of generality, and is denoted SPIGMR.
Scaled Preconditioned Incomplete GMRES (SPIGMR)

1. (a) ro = b— Axo; stop if ||ro||lwrms < 4.
(b) 7o = D~'P~'ry, compute ||[7o||2 = || P~ rol|lwras, 51 = Fo/l[Fo||2-

2. Forl=1,2,--,lmaz, do:
(a) Compute A% = D~*P~*ADg;.
(b) hiv = (Aby,#:), 41 = Ab— 3o, hats, where ip = max(1,l —p+1) .
(©) huyry = |[Wigall2, D1 = Bigr/higr
(d) Update the QR factorization of H; = (hij) = Q;R; (an (I + 1) x [ matrix).
(e) Compute the residual norm p; indirectly.
(f) If p1 < 4, go to Step 3; otherwise go to (a).

3. Compute ||7o||2Q] e1 = (§1,9)", 2 =ViR, ‘G, = = zo + D3.

3. Using DASPK. We have attempted to make DASPK as easy to use as possible, and also upward compatible
with DASSL. However the use of iterative rather than direct methods requires more information from the user and a
deeper understanding of both the application and the solution process, particularly in the choice and implementation
of an effective preconditioner. The direct methods of DASSL are available as an option of DASPK, and the user may
find them useful for the purposes of getting started or debugging by way of smaller test problems.

The actual names of the single and double precision Fortran versions of DASPK are SDASPK and DDASPK,
respectively. The call sequence is described in detail in the initial source file prologue. But we summarize the main

points below.

3.1. Getting started. To get started, DASPK needs a consistent set of initial values T, Y and YPRIME. This
means that we must have F(T,Y,YPRIME) = 0 at the initial time.® Finding a consistent set of initial conditions
for a given problem may not be trivial. There is an option in DASPK to compute the initial value of YPRIME, if
the initial values of Y are known. For some problems, this method may require a good initial guess for YPRIME.
In cases where not all the components of the initial vector Y are known, a nonlinear equation solver for large-scale
systems such as NKSOL [8] can be very effective. It is important that the error tolerances for such a solver be set to
be quite stringent, especially in comparison to the tolerances specified in DASPK. Otherwise, DASPK may not be
able to get past the initial step because of a difficulty in satisfying its error tolerances. We note that there has been
some recent work addressing the specification of consistent initial conditions for general DAE problems [19], however

at the time of this writing we are aware of no corresponding general purpose software.

3 We note here that F is referred to as G in the actual code documentation.



3.2. Specifying the DAE. As in DASSL, the information about the function F in (1.1) is provided via a
subroutine RES, which takes as input the time T and the vectors Y and YPRIME, and produces as output the vector
DELTA, where DELTA = F(T,Y,YPRIME) is the amount by which the function F' fails to be zero for the input
values of T, Y and YPRIME. The call sequence of RES in the use of DASPK differs from that in using DASSL, in

that it includes CJ, which is the scalar «a of (2.4), for possible use in scaling.

3.3. Solution by direct methods. The solution of the linear system at each time step can be done with either
the direct methods of DASSL or with the preconditioned GMRES method. For direct methods, specify INFO(12)
= 0; the possiblities are the same as in DASSL. The user can provide a subroutine JAC to evaluate the iteration
matrix, or else select an option for DASPK to approximate the matrix via finite differences. The matrix needed is
(C)OF /8y’ + OF /3y, where CJ is a scalar (= a) which is proportional to 1/k and is provided as input to JAC. In
the direct case, the JAC routine must have the form

SUBROUTINE JAC (T, Y, YPRIME, PD, CJ, RPAR, IPAR)

The linear system is solved by either dense or banded Gaussian elimination by routines from LINPACK [15].

3.4. Solution by iterative methods. For the preconditioned GMRES method, specify INFO(12) = 1. The
user can specify some of the details in the linear system solution, namely MAXL (the number of iterations allowed
before restarting), KMP (the number of vectors on which orthogonalization is done, NRMAX (the maximum number
of restarts), and EPLI (the convergence tolerance for the linear iteration). Defaults for these constants are: MAXL
= MIN(5,NEQ), KMP = MAXL (this corresponds to complete GMRES iteration, rather than the incomplete form),
NRMAX = 2, and EPLI = 0.05. These defaults can be overridden by setting INFO(13) = 1 and following the
instructions in the code documentation. Changing MAXL or KMP affects the amount of work storage required, as
described in the code documentation.

With the GMRES method, the user must supply a subroutine PSOL which solves linear systems of the form
Pz = b where P is the left preconditioner matrix. The subroutine PSOL has the form

SUBROUTINE PSOL( NEQ, T, Y, YPRIME, SAVR, WK, CJ,
WGHT, WP, IWP, B, EPLIN, IER, RPAR, IPAR)

The right-hand side vector b is in the B array on input, and PSOL must return the solution vector = in B. The
Y, YPRIME, and SAVR arrays contain the current values of Y, YPRIME, and the residual F, respectively. The
preconditioner matrix P is an approximation to the iteration matrix (CJ)0F/8y’ + 0F/dy, where CJ is a scalar
(= @) which is proportional to 1/h and is provided as input to PSOL and to JAC.

For the purposes of DASPK there are two types of preconditioners, depending on whether information about
the iteration matrix is saved from one iteration or timestep to the next. For example, in implementing an ILU
preconditioner one would want to save factorization information from one iteration/timestep to the next. To specify
this type of preconditioner, set INFO(15) = 1; the user will then need to supply a subroutine JAC. There, an
approximate iteration matrix would be formed, and then the ILU decomposition would be performed and stored.
This work would all be done in the subroutine JAC. For the iterative methods option, the call to JAC has the form

SUBROUTINE JAC( RES, IRES, NEQ, T, Y, YPRIME, REWT,
SAVR, WK, H, CJ, WP, IWP, IER, RPAR, IPAR)

The arrays WP and IWP are real and integer work arrays which can be used for communication between the JAC
routine and the PSOL routine. For example, one might store the ILU factorization in WP. For this preconditioner,
the subroutine PSOL solves the linear system by back-substitution using the saved matrix data. For the ILU example,
since this type of preconditioner is relatively expensive, one would like to save it and use it over many iterations and

even many time steps. The strategy that DASPK uses to decide when to re-evaluate the preconditioner matrix is
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the same as the strategy DASSL uses [3] to decide when to reevaluate its Jacobian, except that in addition a new
preconditioner matrix is generated whenever there is a failure of the linear iteration.

The simpler type of preconditioner is one which does not make use of saved information. In this case, set
INFO(15) = 0; then there is no need to supply a JAC routine. Examples of these types of preconditioners are
diagonal scaling or matrix-free SSOR as described in [10].

One can get some idea about how well a given preconditioner is working by monitoring the following information:
IWORK(16) contains the number of convergence test failures for the linear iteration, IWORK(20) contains the
total number of linear iterations, IWORK(19) contains the total number of nonlinear iterations. One can compute
the average dimension of the Krylov subspace by taking the ratio IWORK(20)/IWORK(19) of linear to nonlinear
iterations. This gives an indication of how hard the iterative method is having to work to solve the part of the
problem which is not being approximated well by the preconditioner. (Actually, this ratio can exceed the maximum
dimension MAXL because of restarts; in fact, with up to 2 restarts, up to 3* MAXL linear iterations are allowed per

nonlinear iteration.)

3.5. Higher-index DAEs. Asin DASSL, there is always the possibility in DASPK that the problem specified
does not have a well-defined solution, or has index higher than one.
The index is a measure of the degree of singularity of the system, see [3]. Standard-form ODEs

y' = f(t,y)
are index-0, ODEs with constraints
y = fzy)
0 = g(=y)

are index-1 if 8g/0z is nonsingular. Problems of index higher than 1 can cause difficulties for numerical methods,
and in particular for the stepsize and order selection mechanisms in DASSL. A higher-index problem in DASSL will
usually cause failures of the error tests and Newton convergence test (this information is available in IWORK(14) and
IWORK(15)), and we recommend printing it out routinely on any successful or unsuccessful termination from DASSL
for diagnostic purposes). A surprising number of problems are higher-index; for example incompressible Navier-Stokes
equations are index-2. It is possible to modify DASSL/DASPK to deal with higher-index systems, especially in the
case of index-2. It is also possible to rewrite higher-index systems in lower-index forms which have the same analytical
solution. For more information on this, see [3]. Either of these alternatives must be undertaken very carefully, because
such modifications can sometimes affect the stability properties of the system or of the numerical method [2].

It is also possible to write problems in the form (1.1) for which there is no solution or no unique solution. If this
is the case, what will probably happen is a termination with IDID = -8 (the matrix of partial derivatives is singular).
In our experience, for large problems arising from the method of lines discretization of partial differential equations,
this is usually due to an error in formulating the boundary conditions. In any case, a user who gets this message

should either rethink the equations or else look for a bug.

4. Preconditioners for DAE Systems. The choice of preconditioner can be critical in the performance of
DASPK, as in other settings. We discuss here an approach to forming preconditioners for problems that arise from
the semi-discretization of certain partial differential equations, following work that was done in [7] for the ODE
context. Specifically, consider a mixed system of reaction-diffusion equations in some spatial region, in which some of
the species (some PDE variables) obey time-dependent (evolution) equations, while the rest obey time-independent
(quasi-steady) equations. We assume that some finite difference spatial discretization has been performed on all the
equations, and that the resulting DAE system has index 1.

Let M denote the number of spatial mesh points, p the number of evolutionary species, and ¢ the number of
quasi-steady species. For practical purposes, it is usually best to order the variables by mesh point and then by

species index, i.e. p+ ¢ variables at mesh point 1, followed by p + ¢ variables at mesh point 2, etc. However, for ease
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of presentation, consider the ‘transpose’ ordering—by species and then by mesh point. Thus if u; = (ui,1,. .., s, M)T
is the vector of species i variables at all mesh points, we take y = (w1, ..., Up, Up+1,...,Up+q)” as the DASPK vector.
Each of the vectors w1, ..., u, satisfies an ODE system in time, u; = f;(,y), while each of upt1,...,upt, satisfies
an algebraic system 0 = f;(¢,y). We assume that each f; consists of a reaction term R; that contains no spatial
derivatives, and a diffusion (or more general transport) term S; that involves no interaction among the species. Thus
the system has the form

fi=Ri(t,y) + Si(t,us) (i <p)
fi = Ri(t,y) + Si(t,us) (i > p),

S
Il

o
Il

in which R; = (R;,m) with R; ,, depending only on the variables u;,» at mesh point m, and S; depends on u; but no

other u;. We can also write the DAE system as
(4'1) 0= F(t7 yayl) = (ull - fla R au;,n - fp: _fp+17 ey _fP+Q)T'

If we let I; denote the identity matrix of order pM, and denote f = (fi,..., forq) = R+ S, then the system

Jacobian is

(4.2) J=aF, +F,=a ( oo ) —9f/dy = al, — OR/dy — 0S/dy,

0 0
For a preconditioner approximating J, there are two choices immediately available from this representation.

where I; = ( L0 )

First, if the reaction terms dominate the problem, then
(4.3) Pr =al, — 0R/dy

should be an effective choice. Here when the variables are ordered by mesh point and then species as suggested
initially, Pg is a block-diagonal matrix with M blocks each of size p + ¢, and so is very economical to deal with. But

if the transport terms dominate the problem, consider instead
(4.4) Ps = al; —35/0y.

In this case, with the present ordering, Ps is block-diagonal with p+ ¢ blocks of size M. Depending on the particular
geometry, discretization, and mesh point ordering, each M x M block of Ps should be amenable to standard solution
methods for discrete elliptic PDE problems.

Following [7], preconditioners based on the idea of operator splitting can be formed that combine both of the

above simpler choices. They are

(I —a '8S/dy)(aly —dR/dy), and
(I —a~'dR/dy)(al; — 8S/dy).

(4.5) Psr
(4.6) Prs

The preconditioner Psgr represents the application of the reaction operator alone, followed by a correction involving
the transport operator alone, and vice versa for Prs. Each factor is much more efficiently treated than J itself, and
so the same is true for Psg and Pgrs.

It is possible to do some analysis of the quality of these preconditioners, at least in the limit of small step size

h, which corresponds to large a. Denoting

.
B - BR/ayz(g; b )
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and € = o~ !, we have

J = e_lI_l — A - B,
Pr = € (I, —B),
Ps = e (I —€A),
Psp = e_l(I —eA)(I, —eB), and
Prs = ¢ "(I—eB)(I) —€A).

We begin with a lemma.
LEMMA 4.1. Assume B2 is nonsingular. Define the matriz C by

B11 B12
4. = _ _ .
(4.7) ¢ ( —B;,'B21Biy  —Byy' B2y Bia )
Then for €||C|| < 1, we have
(4.8) (h—eB) '=e'X_1 4+ Xo+eXi+...,
where
0 0
(3 )

X, = I _31232—21
—By,'Bai  B'ByiBisByy' )

and Xy = C*Xo for k > 1.
Proof. We first note that

T _ €B _ I1 0 .[1 0 — e Bll Bl2
1 - 0 el —By1 —Bs» 0 0
_ I 0
— ( —Byi  —cBas ) (I —eC),

with C as given in (4.7). Thus, for €||C|| < 1, we have

-1
= -1 _ —1 I1 0
(I1 —eB) = (I-€C) ( —¢Byi  —eBoy )
_ 2 ~2 I 0
- urorecte ( gy, g )

(I+eC+€C’+--) (e 'D+E).

Hence,

oo
(li—eB) ' =¢'D+(CD+E)+ Y C*CD+E).
k=1
A quick calculation gives X_1 = D and Xo = CD + E, and this proves the lemma. 0O
We first consider the asymptotic behavior of the preconditioners Pr and Psg. As will be seen below, the leading
order term in the error for both preconditioners is the same. Hence, the order € terms for both preconditioners are
needed to compare their overall effectiveness.

THEOREM 4.2. Assume that Bas is nonsingular. Then for €||C|| < 1, we have

1, ,_ (0 0 —Aq BisBj,' Ass 2
(4.9) PrJ—I= ( 0 By, A ) +E( B;)'Bo1 A1 —Bj,' Ba1 Bia By, Aso +0(e).
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Proof. First note that J — Pr = —A. Hence,

PR'J—-1 = -Pp'A
— (X_1 + eXo + 0(62)) A
—X_lA — EX(]A + 0(62).

A simple calculation for X_1 A and XoA now gives the result. O

This result means that, for small & at least, to the extent that Bj,' As» is small in norm, then so is the error
matrix P 'J —1I, and Py is a good approximation to J for the purposes of preconditioning. Here Bsy represents
the Jacobian of the reaction of the quasi-steady species relative to themselves, while As2 represents the transport
operator for those species.

THEOREM 4.3. Assume that Ba» is nonsingular. Then for e - min{||C||, || A||} < 1, we have

, (0 o
PSRJ -1 = ( 0 B2_21A22 )
0 B12B3,' Ass 2
4.10 _ _ 22 72 _ 0] .
(4.10) te ( B3t A2 Bor  Byy'Ass (Aso + Bas) — By, Bo1 Bi2 By, Aos > +0(€)

Proof. From the definition of Psg, a simple calculation gives

PSR:J+<8 A022>+6AB

Hence,
P3pJ — I = —Pgp (As +€AB),

letting A»» = diag(0, A22). From the definition of Psg, it is apparent that Psg = (I — eA)Pr. Hence, for € -
min{||C||, ||A|l} < 1 and Bs2 nonsingular, we have

Pip = (X1+eXo+0()) (I+eA+0()).
Therefore,

Pspd —1 = — (X 1+eXo+O0()) (I+eA+0()) (A2 +€AB),
= _X71A22 — € [XOA22 + X,1 (AB + Agz)] + 0(62).

By an easy calculation, we find that —X_; Ay = diag(0, B}, A22) and

-1
—XoAzw — X_1 (AB + A§2) = ( 0 Bi1>B,, As» ) ’

3521A22B21 B;21A22 (A22 + Ba2) — 35213213123521A22

and this completes the proof. 0O
Comparing the upper left blocks in these two results, note that Ai1 is present in the order € term in equation
(4.9), and is not in equation (4.10). Another difference is that all the blocks in the order € term of (4.10) have a
factor of B, Asa, while the lower left block in (4.9) does not. Thus, while the leading expression in the error for
both preconditioners is the same, we can expect Psgr to be a better preconditioner than Pr when either A;; is large
or Bj;! Ass is small, in some relative sense. The apparent effects of these differences will be seen in the next section.
A result similar to (4.10) can be obtained for the preconditioner in which the two factors of Prs are multiplied

in the opposite order. The leading term in the error equation is the same, but the O(e) term is not.
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If instead we expect A to dominate B, we can consider the remaining two preconditioners Ps and Pgg in (4.4)
and (4.6), respectively. The following theorem follows trivially along the same lines as above.
THEOREM 4.4. Assume that Az is nonsingular. Then for €||A11]|] < 1, we have

o 3 0 0
(4.11) P J—-1I= ( A B A Bo ) + O(e).
In addition, if € - min{||A11]|, || Bl|} < 1, then
—1 [0 0
(4.12) Pplr—1= ( 0 AziBy ) + O(e).

This result indicates that both Ps and Pgrs are likely to be effective preconditioners when Ass dominates B1 and

Bs>. However, the fewer potential nonzeros in the leading order error term for Prs suggests using it over Pg, all
other things being equal. Moreover, if the two factors in Prs are taken in the opposite order, one gets the same
(larger) leading error term as for Ps, suggesting that the order of the factors in Prg is to be preferred.

By departing from the operator splitting approach, it is possible to devise preconditioners P such that P~1J—T =
O(e). However, the cost of applying P~ is likely to be higher, and may be prohibitive on some problems. Along
these lines, one can show the following result.

THEOREM 4.5. Define P, = (e *I; — B)Q, where

5 _ [ Bi1 B _( LI 0
(413) B = ( le I2 ) and Q = ( 0 A22 +B22 ) .
Then
(4.14) P 'T —1=0().

Nezt, define P, = TPy, where T = diag(I1 — €A11,12). Then
(4.15) Py T —1=0().

In the first case, the error in the preconditioner itself is

P —J= ( A011 B12—B12(0A22+322) )

In the second case, the factor T is designed to remove a block in the error matrix, so that

Py J= ( 8 Bi2 —312(()A22+B22) >+O(e).

Thus one would expect P> to perform better than P; when Ap; is large. The dominant cost of inverting P; and P»
above is most likely to be in solving linear systems involving Az + B2z. Note that this matrix will be nonsingular
for index-1 systems.

Often the numerical behavior of DASSL and its variants on constrained systems of this type is improved if the
constraint equations in the DAE system are scaled. For index-m DAEs, the condition number of the iteration matrix
is O(a™) [3, p- 144]. Scaling is a way to reduce the dependence of the conditioning of a DAE system on the stepsize.
In the case of the reaction-diffusion system, this would mean applying a scale factor o to the lower ¢M equations in
the system (4.1). For semi-explicit index-1 problems, the scale factor o = « is suggested [3, p. 145]. If we define a

scaling matrix

(5L 0
(4.16) 5_( 0 m),



then the scaled problem is F = SF = 0. The choice of preconditioner for this problem corresponding to P for the
unscaled problem is P = SP. It is easy to see that the Jacobian of F is J = SJ, and so P~'J = P~!J. Thus
scaling does not affect the analytical properties of the method, but it does have the potential to improve its numerical
properties by way of improved conditioning (roundoff error growth) of J and P.
If scaling is applied to the preconditioner Psg of (4.5), we can rewrite Psg as
Psg S(I —a 'A)(al, — B)

= S(I—a 'A)S™'S(al, — B)
(I—a 'SAS ") (aSI; — SB).

But SAS™' = A because A is block-diagonal, and SI; = I;. Thus we have
(4.17) Psp = (I —a 'A)(al, — SB).

This means that the addition of scaling to this preconditioner can be implemented simply by scaling the lower blocks
of the B terms in the second factor of Psg.

The result is not as simple if scaling is applied to the preconditioner Prs of (4.6). Since SBS™' # B, we obtain
only

(4.18) Prs = (I —a 'SBS™")(al; — SA).
Thus, in addition to scaling the lower blocks of the A in the second factor, we must scale the off-diagonal blocks of

B to 0By and 0 !By, in the first factor.

5. Examples. In this section we will present several examples which illustrate how the method is applied and

how well it works on various types of problems.

5.1. Two-dimensional heat equation. The first test problem is a two-dimensional heat equation given by

ou  d*u  Ou

i e A il

(5.1) ot~ o2 T oy
on a square 0 < z,y < 1, with homogeneous boundary conditions (z = 0 on the boundary) and initial condition
profile u(z,y,0) = 162(1 — z)y(1l — y). We used a uniform Cartesian product mesh with L internal points in each

direction, with spacings Az = Ay =1/(L + 1). For
Yir = u(jAz, kAy) (0<j,k<L+1),
the discrete problem is

(5.2) { Yik (Az) ?(yjsrk + Y51k +Yike1 + Yk 1 —4yx), 1<4k<L
’ 0

y;x otherwise

Thus the total size of the system is NEQ = (L + 2)%.
The DASPK vector y consists of the y;, ordered first by j, then by k. The DAE system has the form

0=F(t,y,y') = Ey — By

where F is the identity matrix with 0 in place of 1 for boundary indices, and B has the usual 5-stripe structure.
The inclusion of the boundary conditions as additional algebraic equations makes this a DAE system and not

an ODE system. For this problem, that is certainly not necessary, and perhaps less natural than forming ODEs at

the L? internal mesh points. However, we choose this formulation here for the sake of illustration, and note that for

some more compliciated boundary value problems there is a definite advantage to that choice.
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The iteration matrix required in DASPK is
A= (C))F,+F,=(CJ)E - B.

The preconditioner P is a tridiagonal difference-quotient approximation to A, obtained by the method of Curtis,
Powell, and Reid [13], as used in DASSL. Columns whose indices differ by three are differenced simultaneously,
producing a tridiagonal approximation at a cost of four F' evaluations. However, it is not the tridiagonal part of
the original matrix. Instead, the elements of the original matrix which do not lie in the tridiagonal band have
been lumped, via the differencing, into the tridiagonal band. The preconditioner was computed and factorized in a
subroutine JAC as described in Section 3.4, and the back-substitution was done in subroutine PSOL.

We solved the problem with the error tolerances RTOL = 0, ATOL = 1073, for three cases: L = 5, L = 10,
L = 20, with both the direct and iterative options of DASPK. For the direct option, the iteration matrix was
approximated by the tridiagonal matrix described above; hence it is a relatively poor but cheap approximation to
the actual iteration matrix. Solution errors in all cases were comparable. The results are given in Table 5.1, where
F denotes the number of function evaluations, PE is the number of preconditioner evaluations (in the direct method,
this is the number of evaluations of the approximate iteration matrix), PS is the number of preconditioner solves
(backsubstitutions), NLI is the number of nonlinear (modified Newton) iterations, LI is the total number of linear
iterations, AVL is the average number of Krylov iterations per Newton iteration (NLI/LI), and NCF is the number

of nonlinear convergence test failures. (There were no convergence test failures for the linear iteration.)

Method | L | Steps F PE PS | NLI LI | AVL | NCF

Iterative | 5 45 220 17 169 | 87 82 | 0.94 0
Direct 5 98 513 102 0 207 0 0.00 28

Iterative | 10 47 280 18 226 | 91 135 | 1.48 0
Direct 10 | 671 4443 985 0 1488 0 0.00 | 324

Iterative | 20 51 449 17 | 398 | 100 | 298 | 2.98 0
Direct 20 | 1779 | 12111 | 2651 0 4158 0 0.00 | 878

TABLE 5.1

Test results for heat equation

The results indicate that the direct method (which gives identical results to DASSL), is having some trouble with
convergence of the Newton iteration. This is not unexpected, considering that the approximation we are using to the
iteration matrix is not very good. The iterative method, using (as a preconditioner) the same matrix approximation
as the direct method, but in addition using GMRES to give a more accurate solution to the linear system, has no

trouble achieving convergence in either the linear or nonlinear iterations, and gives a solution much more efficiently.

5.2. Multi-species food web problem. The next problem is a model of a multi-species food web [4], in

which mutual competition and/or predator-prey relationships in a spatial domain are simulated. Here we consider a

model with s species, where species s/2 + 1, -, s (the predators) have infinitely fast reaction rates:
(53) %CT = fl(xa Y, 1, C) + dl(czzac + c;y) (z =12, 5/2):
0= fi(mayatac) + d1(c1’w:c +C'1yy) (l = 3/2 + 17 e ,8),
with
(5.4) file,y,t0) =c(bi+ Y aid).

j=1

The interaction and diffusion coefficients (asj, bs, d;) could be functions of (z,y,t) in general. The choices made for
this test problem are for a simple model of p prey and p predator species (s = 2p), arranged in that order in the
vector c. We take the various coefficients to be as follows:

a; = —1 (all 9)
(5.5) ai; =—0.5-10"° (i <p,j >p)
aij = 10" (i > p,j < p)
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Fi1G. 5.1. Food web problem. Plot of prey species at steady state (8 = 300).

(all other a;; = 0),

(5.6) b; = (1 + azy + Bsin(4dnz) sin(4ry)) (1 <p)
) bi = —(1 + ary + Bsin(4nz) sin(4ny)) (2 > p)
and
di=1 (<
(5.7) di = .05(l(z' ﬁ)p).

The domain is the unit square 0 < z,y < 1, and 0 < ¢ < 10. The boundary conditions are of Neumann type (zero
normal derivatives) everywhere. The coefficients are such that a unique stable equilibrium is guaranteed to exist
when « and B are both zero, and time derivatives appear in the equations for species s/2 +1,---, s [4]. Empirically,
for (5.3) a stable equilibrium appears to exist when a and 3 are positive, although it may not be unique. In this
problem we take a = 50 and various values of 3. The steady-state solution for the prey with p = 1 and 8 = 300 is
represented in Figure 5.1. The plot for the predator is identical except for a different scale on the vertical axis.

The initial conditions used for this problem are taken to be simple peaked functions that satisfy the boundary

conditions and very nearly satisfy the constraints, given by

¢ = 10+i[16z(1—2)y(1—y)]”> G=1,---,5/2)
s/2
ci _(bi"‘zaijcj)/aii (i:s/2+1,---,s).

i=1

The PDE system (5.3) (plus boundary conditions) was discretized with central differencing on an L x L mesh,
much the same as for the first example. The resulting DAE system has size NEQ = sL>.

This problem is of the form treated in Section 4, with ¢ = p. Based on the ideas there, three different pre-
conditioners were constructed. First, because the interaction terms f; contain very large coefficients, we expect that
Pg, given by (4.3), may be effective. Second, we consider the product Psg, given by (4.5), and the same product
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taken in the opposite order, which we denote P%p. The inverse of the factor (I —a~'0S/0y) representing the spatial
part of the Jacobian is not computed exactly, but only approximated by a fixed number (namely 5) of Gauss-Seidel
iterations on the corresponding linear system.

To begin with, we compare the direct and Krylov solution modes for the case 8 = 100, p =1, and L = 20. In
the direct case, the Jacobian is treated as a banded matrix with half-bandwidths equal to sL = 40. In the Krylov
case, we use the preconditioner Psg. In order to measure global errors, a run in the direct mode was first made with
tolerances RTOL = ATOL equal to 10~ °, and for each subsequent run with looser tolerances, the differences AY
between the current and accurate solution were taken at times ¢t = 10~7,107%,107",3,6,9,10. A weighted global
error measure was computed as WGE = max[|AY;|/(|Yi| + 1)], the maximum being over ¢ and ¢. For the direct
solution mode with RTOL = ATOL = 10~°, the value of WGE is 2.5 - 10~°. For the Krylov solution mode, values
of RTOL = ATOL of 1075, 107%, and 10~7 gives WGE values of 1.4 - 107, 4.3 - 10~°, and 4.9 - 10~°, respectively.
Thus the Krylov run with 10™° tolerances produces nearly the same accuracy as the direct run with 10~° tolerances.
Running on a Cray Y/MP computer, the cost of the two runs is nearly the same: 23.8 CPU sec in the direct case,
and 23.3 CPU sec in the Krylov case. However, the storage requirements are far lower in the Krylov case, because of
the use of a banded Jacobian in the direct case and a block-diagonal matrix in the Krylov case. For this pair of runs,
the total number of real and integer words of work space is 104,910 in the direct case, and 16,931 in the Krylov case,
a factor of 6.2 lower. For a finer mesh or larger number of species, the relative savings in storage in storage would be
even greater, and the cost advantage for the Krylov mode would also be greater.

Next, we show the results of DASPK runs in the Krylov mode for various values of 3 and L, still with p =1, s = 2,
and with tolerances of 107°. The runs were made on a Cray Y/MP. Table 5.2 gives, for each choice of 3, L, and
preconditioner, the total number of steps, the average number of Krylov iterations per Newton iteration AVL, and
the CPU run time RT in sec. For 8 = 100 or 300, it is clear that Pg is inferior to the product preconditioners,
whereas for 8 = 1000 it is superior. As expected, the less expensive preconditioner Pr always results in a higher
average number of linear iterations per nonlinear iteration. The product order Psgr proved to perform better than

P in all cases for which it was run.

8 L | Prec. | Steps | AVL | RT
100 | 20 Pr 874 5.07 | 82.0
100 | 20 | Psr 198 1.32 | 149
100 | 40 | Psr 314 2.76 154
100 | 60 | Psr 320 2.69 | 350

300 | 20 | Pr | 989 | 4.88 | 90.2
300 | 20 | Psg | 192 | 1.46 | 15.3
300 | 20 | P4 | 213 | 2.02 | 22.2
300 | 40 | Psg | 200 | 1.15 | 546
300 | 40 | Pty | 226 | 1.56 | 75.2
300 | 60 | Psg | 237 | 2.01 | 205

1000 | 20 | Pgr 188 194 | 89
1000 | 20 | Psr 219 1.49 | 177
1000 | 40 | Pgr 189 2.20 | 38.8
1000 | 40 | Psr 220 1.32 | 64.2
1000 | 60 | Pr 205 2.86 | 113
1000 | 60 | Psgr 198 1.61 | 147
TABLE 5.2
Test results for food web problem

One disturbing pattern in Table 5.2 is the unexpected growth of total cost as a function of L for fixed choice
Psg of preconditioner. We expect costs to grow as L?, but for 8 = 100 the jump in run time as L is changed from
20 to 40 is anomalous, as is that for 8 = 300 and L = 40 and 60. While we have no complete explanation for this,
we note that the higher costs are accompanied by a higher frequency of preconditioner evaluation, and suspect that
they are related to errors in the value of B = QR /0y incurred by evaluating this part of the Jacobian as infrequently
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as possible. Furthermore, by an analysis extending that in Section 4, it can be shown that relative errors in B are
magnified in the error matrices Py 'J —1T and Py, éJ — I, by roughly 10*, the coefficient in the lower left block of the
array (aij).

The question of whether or not to apply scaling to the constraint equations arose in some of the tests on this
problem, when the performance of the solver seemed to degrade at late times t. In some (but not all) such cases,
scaling the constraints by a, as described in Section 4, improved the performance, by as much as 20% in run time.
But for some cases the run time with scaling was larger than without it, with no apparent pattern for the cases in
the two categories. For example, for the case f = 100, L = 20 with preconditioner Psg, the run time is 14.9 sec
without the rescaling and 12.2 sec with it. But the run with Pr on the same problem (the first case in Table 5.2)
ran even slower with rescaling (92 sec vs 82 sec).

Finally, we present the results for one other case, the largest one in this test set: g = 1000, L = 60, p = 7, for
which the problem size is NEQ = 50,400. The run with preconditioner Pr and tolerances of 10™° (as before) ran to
completion in 471 sec on the Cray Y/MP, in 215 steps, with AVL = 2.75.

6. Acknowledgement. Most of the programming and debugging work in generating the DASPK solver from
DASSL was done by Clement Ulrich. We are very grateful for his efforts.
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