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Abstract

The method of lines replaces a PDE problem by an ODE
initial value problem which is typically stiff and
often solved by BDF methods. This normally requires
the system Jacobian matrix. But Krylov subspace
iteration methods solve linear systems without explicit
need for the matrix. Within a BDF method and Newton
(nonlinear) iteration, a Krylov method such as GMRES
(Generalized Minimum Residual) can be used with the
matrix involved only in operator form by way of a
difference quotient, We present a scaled and
preconditioned GMRES algorithm called SPIGMR. For
reaction-transport PDE systems, several preconditioners
arise in a natural way, using the reaction and
transport operators separately, or in succession as in
operator splitting. A variant of the general purpose
solver LSODE, called LSODPK, contains various
preconditioned Krylov methods. Tests on a reaction-
diffusion system demonstrate their effectiveness.

1. Introduction

There has been much recent interest in the use of
iterative linear equation techniques in the solution of
large systems of stiff oridinary differential equations
(ODE's). Since numerical methods for stiff ODE's are
typically implicit, the integrator must solve a system
of nonlinear equations at each integration step.
Newton-1ike methods are most often used to solve these
nonlinear systems, and hence require the solution of a
Tinear system for each Newton iterate. The usual
approach to solving the linear systems is to use a
direct technique such as Gaussian elimination {or some
variant of it). For large problems, the associated
Tinear algebra often makes up most of the work and
required core memory involved in the integration of the
ODE's.

The Method of Lines (MOL) has long been an available
technique for solving systems of time-dependent partial
differential equations (PDE's). When solving PDE'S by
MOL techniques, the spatial operators are discretized
while time 1s continuous, resulting in ODE systems
which are often stiff. The high quality (and number)
of available stiff ODE solvers makes this an attractive
approach. However, the use of direct Tinear equation
methods in most ODE codes has restricted the use of MOL
techniques to problems of modest size, due to storage
Timitations and the cost of solving the Tinear
equations. Iterative linear solvers have also been
used in ODE solvers (e.g. GEARBI [9]), but until
recently have assumed a certain form for the problem,
have required some condition on the coefficient matrix
in order to guarantee convergence, and in some cases
have involved the estimation of certain method
parameters which are problem-dependent.

The development of Krylov subspace projection
methods for general nonsymmetric Tinear systems
requiring no parameter estimation (cf. Saad [13,14],
and Saad and Schultz [15]) has sparked a renewed °
interest in using iterative Tinear methods in stiff ODE
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. overview of this approach.

solvers, In addition, the Krylov methods only require
the action of the coefficient matrix times a vector,
not the matrix explicitly. In the nonlinear equations
setting, the coefficient matrix 1s the Jacobian of a
nonlinear function. Hence, the matrix-vector multiply
can be approximated using a difference quotient. This
has the effect of eliminating the need to store the
Jacobian matrix, and so can lead to drastic reductions
in storage over direct methods. For robustness, some
preconditioning of the Tinear systems seems needed, and
this typically requires some matrix storage, but still
much less than that needed by direct methods. The work
of Miranker and Chern [12], Gear and Saad [8], Chan and
Jackson [6], and Brown and Hindmarsh {4,5] has centered
on determining the overall effectiveness of this
approach, and/or investigating the theoretical aspects
of the combined stiff ODE method/Newton/Krylov
algorithm. The initial results indicate this is a very
promising approach, and the reduced storage costs and
robustness of the Krylov methods offer the promise of
solving much larger systems than previously possible
using MOL techniques.

In the remainder of the paper, we attempt to give an
Section 2 contains the
necessary background on Newton and Krylov methods.
Section 3 discusses scaling and preconditioning when
using the Krylov methods. In Section 4, we present
several types of preconditioning one can use when
solving reaction-diffusion PDE systems. Section 5
discusses the implementation of the Krylov methads in
the code LSODPK, a variant of LSODE [10,11], and then
in Section 6 we present an example i1lustrating the
various approaches outiined in Section 4,

2. Newton/Krylov Methods in Stiff ODE's

We are interested here in the numerical solution of
the ODE initial value problem

y=fty) , yit) =y, (- =ddt, yerh. (2.1

We will assume -that:the ODE in (2.1) is stiff, meaning
that one or more strongly damped modes are present, and

wil] use the popular Backward Differentiation Formula
{BDF) methods to solve it. These methods have the
general form

q L .

JEI O Ypg * h8yY, » ¥, = flt,y), (2.2)
where q is the method order (normally 1 < q < 5). The
BDF methods are implicit, and so at each time step one
must solve the algebraic system

Y, =

q
Yp - MBfltLy) -a, =0, a = jfl o5 Yo (2.3)
for y, (B, >0). If x, is defined by
Xo = hy, = (y, - a)/B8, ,
then (2.3) is equivalent to
(2.4)

Fn(xn) E X, - hf(tn, an+8°xn) =0,



and this is the system we will deal with. A Newton-
type method applied to (2.4) has the following form:

Let xn(O) be an initial guess for X,.

Form=0, 1, 2, ... until convergence, do:

Solve A s (m) = -F (x (m))
set x (m1) = x (m) + s (m) ,

where the coefficient matrix A is some value of (or an
approximation to a value of)

Folx) =1 -h8(t,y) (y=a + Bx) »
where J(t,y) = 3f/3y, the system Jacobian matrix.
Many ODE solvers attempt to save work by computing and
storing A (and 1ts decomposition factors 1f a direct
method is used to solve {2.5)) once, and using it for
all iterations on that step. Futhermore, A is usually
also held fixed over several steps of the integration,
only discarding the current A when it is determined to
be sufficiently out of date. This results in modified
Newton iteration, and typically gives a linear rate of
convergence, whereas the full Newton scheme uses A =
F;(xn(m)) and gives a quadratic rate of convergence,

When using an iterative method to solve (2.5)
approximately, one can view the basic iteration scheme
as either modified Newton or the full Newton scheme.
Modified Newton requires the forming and storing of A
for use over several steps. One then solves (2.5)
approximately by some iterative technique. One example
of this approach is the ODE solver GEARBI [9], which
uses Block-SOR as the basic iterative solver. Another
is the solver developed by Chan and Jackson [6], which
uses the Krylov methods called Conjugate Residual and
Orthomin(k) as the iterative solvers.

Since the full Newton scheme requires the use of A =
F;(xn(m)). this approach only makes sense when A
does not need to be formed explicitly. In fact, the
Krylov methods typically only require the action of A
times a vector v. Hence, using a difference quotient
of the form '

Av = F{x)v = [F,(x + ov) - F (x)]/o
(x = x (m)) will approximate the desired
multiplication. This approach has been taken by the
authors in [4,5] and continued here. We have referred
to these nethods as matrix-free due to the absence of
required storage for A, With either approach there is
an error associated with solving (2.5) only
approximately, and with the second approach there is an
additional error resulting from the approximation
(2.6). With this second approach, one can view the
resulting nonlinear iteration scheme as being in the
class of Inexact Newton methods as developed by Dembo,
Eisenstat and Steihaug [7].

The particular Krylov subspace projection method we
will consider here is the Generalized Minimum Residual
Method (GMRES) due to Saad and Schultz [15]. (Other
choices are possible [5], but GMRES seems to be the
best overall choice.) To describe the algorithm,

{2.5)

(2.6)

consider the general linear system

Ax = b, (2.7)
where A is an N x N matrix, and x and b are N-vectors.
Here, (2.7) represents the full Newton equations (2.5)
with A = F;(xh(m)), b = -F, (x,(m)) and the solution
vector x represents the increment sn(m) = xn(m+1) -
xn(m). If x, 1s an initial guess for the true solution
X, = A tb of (2.7), then on letting x = X, + Z we get
the equivalent system
" Az = oo (2.8)
yhere T = b - AxD 1s the initial residual. Let K, be

the Krylov subspace
-1
Ky = span(ro, Argy «ocs A rol .
By a Krylov subspace projection method on K, we mean
a method which finds an approximation
Xg = X, + 25, with z € K1 .
To specify uniquely x, (or zy), GMRES requires that

b - Axgll, = min

iy - Ax"z
xt:xo+K2

= min r - Azil,, (2.9)

zeKL
where H°Hz denotes the Euclidean norm.

The minimization problem (2.9) is solved by
constructing an orthornormal basis for Kp. This is
accomplished by using an Arnoldi process [1], which can
be stated as follows:

1. Compute o= b - Axo and set v, = rolﬂroﬂz .

2.For j=1, ..., &, d

0:
uj+] = Avj - ifl hijvi R hij = (Avj,vi)

Pien,s = ™2 0 Vi T g Mgy -

Here, (°,*) 1s the usual Euclidean inner product. If
we let VJ = [v]....,vj] (j-l.....ltl) denote the
N x j matrix with columns Vi and Hy = (hij’ the
(£+1) x L upper Hessenberg matrix whose nonzero entries
are given by the above hfj. then Saad and Schultz [15]
have noted that
Ry = Vi Ay o VIV, = I, , and AV = Vo, (2.10)
where I; is the j x j identity matrix. Furthermore,
Span{Vji = Kj (§=1,...,2+41), where we have assumed that
the dimension of Kj is J. .
If we et z sz for y € R, then in (2.9) we have
Ur, - Azll, =By, - 5v£yu2 = iV, (Be, - ﬁly)ﬂz
nge; - Fyy, ,
where B = Ilrollz v ey = (1,0, ..., 0)T € R2+1,
and we have used (2.10) and the fact that Vg has
orthonormal columns. Thus the solution of (2.9) is
z, = Vnym' where v solves

minl"Be1- Hlyﬂz. (z.11)

yeR



We solve {2.11) in terms of a QR factorization
performed on ﬁl using Givens rotations. The GMRES

algorithm can now be stated as follows:

Algorithm 2.1 (GMRES):
1. Compute = b - Axo and set vy = rolllrollz

2.For L= 1, ..y £ x°® do:

ma
L
(l) '“] = AV£ - 15] h.lzvi » hiz = (Av,'.vi)

haar,e = M™gylly o Ve = Way/Nae
(b) Evaluate py = b ~ Axyll,
(c) If pp < 6 go to Step 3; otherwise go to (a)
3. Compute xy = x, + V,y; , where y, solves (2.11)

In Step 2(b) above, Saad and Schultz [15] have noted
that p, may be calculated without forming Xy or
¥, See Brown and Hindmarsh [5] or Saad and
Schultz [15] for more details. The parameters § and
Em‘x are user-specified, Lmax normally being
dictated by storage considerations, and & specifying
the amount of accuracy desired in the solution x,.

See Brown and Hindmarsh [4,5] for more details
regarding §, lmax’ and other properties of the
algorithm.

Saad and Schultz [15] have shown that GMRES will
converge to the true solution x, in at most N
iterations. The only type of breakdown that can occur
here is when Yo 0. This is referred to as a
happy breakdown since in this case one can show that
Xg = Xgae In Algorithm 2.7, as & gets Targe,
much work is required to make v, , orthogonal to
all the previous vectors vy, ..., Vp. Brown and
Hindmarsh have considered an incomplete version of
GMRES, denoted IGMRES, which differs from Algorithm 2.1
only in that the sum in Step 2(a) begins at i = 10
instead of i = 1, where 1 = max {1,2-p+1) and p is
the number of vectors to which A/ is to be made
orthogonal, namely v,_ 4]0 s Vgo (The complete case
isp= lmax') See [5] for more details on IGMRES,
including an inexpensive (indirect} way to calculate
the residual norm.

Finally, the theoretical aspects of the combined
Newton/Krylov method involve analyzing how the errors
associated with the difference quotient approximation
{2.6) and solving (2.5) approximately affect the
accuracy of the computed x,. The reader is
referred to the papers by Brown {2], and Brown and
Hindmarsh [4,5] for a detailed analysis.

3. Scaling and Preconditioning

In the context of the solving y = f(t,y) by BOF
method (2.2), and of a Newton iteration (2.5) on the
nonlinear algebraic system (2.4) at each step, recall
that the job of the GMRES algorithm is to solve (to
within some prectsion) the linear systems Ax = b in
which

A=1- hBoJ(tn, an+8°xn(m) )

(3.1)

b= -Fn(xn(m)) = -xn(m) + hf(tn. an+80xn(m) )

X = xn(m+l) - xn(m) .

That is, the soTution vector x 1s the Newton increment
for the ﬁth Newton (nonTinear) iteration, and A is a
value of I - hBOJ, J being the system Jacobian, J =
af/3y. However, the GMRES algorithm as it stands

is only of limited use for this purpose. For realistic
problems, it is unlikely to give acceptable performance
unless it is enhanced. We consider two kinds of
enhancements here--scaling and preconditioning.

Scaling simply means applying weight factors to the
components of a vector before computing its norm, and
may be dictated by the fact that different components
are in different physical units. 1In the ODE setting,
weight factors are already available in terms of
tolerance parameters RTOL and ATOL, namely

Wy = RTOL, [y, | + ATOL, . (3.2)
To be specific, a weighted root-mean-square (WRMS) norm
with these weights is used in place of the Euclidean
norm, The two norms can be related by way of the
diagonal scaling matrix

D =N diaglw,, ooy Wy)
so that for any vector x,

S up~1 xily
The Tinear system Ax = b can then equivalently be
expressed in scaled form

(0"%a0) (0™Yx) = (0°Tb), or AR -5,
such that Euclidean norms are appropriate on X and the
associated vectors in 2 Krylov method for this system.

Scaling allows the various components of an error
vector or residual to be compared with one another, but
1t may or may not help to speed convergence of a Krylov
iteration method for Ax = b. To do that, we enhance
the jteration by preconditioning. In general, this
means we seek two matrices, P] and PZ {the Teft and
right preconditioners), for which the iteration is more
effective an the equivalent system

(P;IAPE]) (P,x) = (P;lb). orAx = b .

Whether or not preconditioning really does enhance the
method depends on the extent to which these matrices
can be found so that

{3.3)



(1) Tinear systems Pix = ¢ and sz = C are
economically solved, and
(2} the product PP, approximates A in some
sense (R is close to the identity matrix).
Preconditioning can be done on both sides, or on one
side only {the other matrix being the identity).
Scaling and preconditioning can be applied to the
system together by composing the above two
transformations of the matrix and vectors involved.
The result is a system
A% = B, with
1,01

K=o =00,
T=0'x=0x, F=0T5= n"p;‘b .

(3.4)

The GMRES iteration, or any other Krylov iteration, can
then be applied to this transformed system (3.4). The

initial residual o © b - Ax, is first transformed

to F; - D']P;]ro. Then the Krylov sequence

K= {F;, iF;. KF, ...} is generated, with

[}
the finite-dimensional subspaces i; represented by
basis vectors V}. Vé, «ees 3. When a computed
solution %, is chosen from X + K, 1t is

back-transformed to x, = PE’D?&, and

1

x, les in x + PE Dﬁi. A fact that is

perhaps surprising is that this latter L-dimensional
subspace is independent of D, and also independent of
whether the preconditioners are arranged with P] on
the lTeft and Pz on the right, or P]Pz on the left, or
PIPZ on the right. Although the subspace has this
independence, the choice of Xy made within the subspace
does not, since the scaling and preconditioners all
enter into the minimality condition (2.9) and the
convergence test (Step 2(c} of Algorithm 2.1).

The convergence test for the preconditioned
iteration requires further attention, because we

compute (cheaply) the residual norm

JRPPEIRAR 1 I
p,. = IIr'-IIz ip P1 |'!'IIz IIP' r'-"WRMS

rather than "rlHHRMS‘ In order to impose a test that.

is similarly inexpensive but excludes the bias
associated with the factor P;], we scale the test

constant & (which p, is tested against) by the

-1
factor 1P 'r o'l mus’"'" o' wrms -
The incomplete version of the GMRES algorithm,

denoted IGMRES, when combined with scaling and
preconditioning, produces an algorithm denoted SPIGMR.
This algorithm can now be stated as follows:

Algorithm 3.1 (SPIGMR):
1. (a)
(b) Compute ?;
- -1
set §' = 6 1Py 'r hpus "o s
(c) Set v, = T /I,

2.For £ =1,2, .u., Lmax' do:

Compute T = b - Axo; stop if "ro"NRMS <$é

SToel e aoel .
D Py rgs Hrglly = 1Py r tpys ¢

2o eloelpn=Tne
(a) Compute AVy = D™'P7'AP; 'DVy

- o~ .'. -~ ~

where 1 = max (1,84-p+1), b p = (AV,,V,)
(c) Set Moot e ™ Wgyy s Vi‘].= wi+l/h£+1,l
{d) Update QR factorization of (Fij)

(e) Compute indirectly p; = "P;]'L"ukns
(f) 1f p, < &' go to Step 3; otherwise go to (a)

3. Compute Z in iz via (2.11); set x; = x  + PE'DE

4. Reaction-Transport Systems

The SPIGMR algorithm described above, when combined
with a stiff ODE solver such as LSODE, represents a
combination of rather powerful general purpose
techniques--a BDF method for the ODE integration,
Newton iteration for the nonlinear algebraic system,
and a Krylov iteration for the linear systems.

However, to be effective on challenging problems
arising from the method of lines, it is necessary to
take advantage of particular features of the problen.
The preconditioner matrices provide an ideal means for
doing that. The combination of BDF, Newton, and GMRES
methods with a problem-dependent preconditioner matrix
(or matrices) represents a compromise approach to the
problem. It is not totally ad hoc, and thus retains
flexibility with respect to the scope of problems of
interest, but is not totally general either, and so can
exploit problem structure. In contrast to a completely
ad hoc approach, the consequence of an erroneous or
unwise choice of preconditioner here is a higher cost
for the solution, not a failure to get a solution.

Consider a reaction-transport PDE system in which a
vector u = u{t,x) with p components varies with time t
and a space variable x (of any dimension), according to

du/at = R(t,x,u) + S(t,x,u) (4.1)

plus initial and boundary conditions. Here R
represents reaction terms and is a point function of u,
while S represents a spatial transport operator. In
our motivating model problems, S is dominated by
diffusion, but it need not be in general.

Hext, suppose a MOL treatment of the problem is
done, with a traditional finite difference discretiz-
ation of (4.1) on a mesh {xi) of q points.

(Other choices, including moving grids and finite
elements, are possible, and our methods apply or are
easily extended to cover ther, but we present only the
traditional case for the sake of simplicity.) The
result is an ODE initial value problem in a vector y =
(y,. cens yq)T » Wwhere y, approximates u(t.xi). The



vector y has length N = pq and satisfies an ODE system

¥ = £{t,y) = R(t,y) + S(t,y) . (4.2)
Here R involves no spatial coupling, while S (the
discretization of S, including discretized boundary
conditions) is dominated by spatial coupling. Thus
block i of (4.2) has the form

¥y = filty) = Ryltyy) + 50t vy ceey ). (4.3)

A preconditioner matrix P needs to approximate the
Newtdn matrix A =1 - hBoJ in (3.1), but at the
same time be easily solvable (i.e., systems Px = b need
to be easily solvable). Thus any approximation Jtod
that includes the dominant features of J can be used to
form a preconditioner P = 1 - hBoﬁ. We use this
idea on reaction~transport problems by fixing our
attention on the reaction process or on the transport
process separately.

Suppose first that the reaction process is dominant,
as far as the stiffness reflected in J 1s concerned.
Then we can consider approximating J by the block-
diagonal matrix

B = 3R/3y = diag (3R,/%yys ...y a‘ﬁq/ayq) (4.8)
whose q diagonal blocks (each p x p) are the Jacobians
of the one-point reaction terms alone. This gives a
preconditioner P = | ~ hBop which is Tikely to
enhance the GMRES iteration considerably, but yet is
relatively easy to solve. Some further improvement
might be possible at almost no extra cost by including
in B the diagonal blocks of the transport Jacobian
35/3y as well, i.e. by setting the 1th diagonal
block of B to

B'i = aﬁilayi + a§1/3yi »
so that B is all of the block-diagonal part of J.

Even the reaction Jacobian (4.4) may still be
difficult to compute, store, and solve, for a
complicated problem. In most cases, supplying partial
derivatives of R, in closed form is out of the
question. However, as long as the individual R, (or
R, + S; = f, in the case of (4.5)) can be
evaluated separately, then a difference quotient scheme
to approximate B can be used, and each such evaluation
of B would cost about the same as p evaluations of f.
The cost of solving linear systems Px = b with a
block-diagonal matrix P can be kept to a minimum by
constructing and storing the LU factors of the diagonal
blocks of P when formed, and backsolving to get
P"1b. Reevaluation of P would only need to be done
periodically, by the same strategy normally used to
reduce evaluations of J when all of J is formed. The
evaluation and factoring of P can be further speeded up
on a multiprocessor, because the q blocks can be

(4.5)

processed independently.

Both storage and computational costs for
block-diagonal preconditioning can be reduced greatly
by a block-grouping scheme. We consider grouping the q
spatial points into g groups, such as by a
decomposition of the spatial domain, such that only one
value of Bi from each such group is a reasonable
approximation for the whole group. Then.we have
reduced both cost and storage by a factor of g/q, with
perhaps only a slight loss in convergence speed. If
convergence is degraded too much, the grouping needs to
be refined or revised. This idea is the analog in
space of the current and very effective strategy of
periodic evaluations of Jacobians in time.

Now suppose that the transport process is dominant.
A natural choice of preconditioners 1s then one that
ignores the coupling between the PDE components at each
spatial point, and instead arises from the discretized
transport terms §'. To be specific, suppose for the
sake of the presentation that the spatial derivatives
occur linearly in S, so that we can write the
finite-differenced term 5, as

§i(t.y,....,yq) = Dlyy 4Byt I Uiy - (4.6)
j<i 3>

Assume further that an approximate representation of
the form (4.6) exists in which all of the p x p
coefficient blocks are diagonal, reflecting the fact
that component interaction is being ignored here. Then
the corresponding approximation to A =1 - hBOJ is
a matrix P whose p x p blocks are I - hBoBi (on
the diagonal), -thLiJ (below), and -hBOUij
(above), and all of these blocks are diagonal. This
means that the system Px = b decouples into p separate
q x q systems plk) x(k) = plk) k=1, ..., p),
in which the matrix P(k) for the ktP system {for
the k0 PDE component) has the structure of the
discrete spatial differencing used, but is totally
independent of the systems for the other components.
Having defined a preconditioner based entirely on
transport processes for decoupled components, a number
of choices may be available for solving the systems
P(k) x(k) = b(k). depending on the nature of the
transport. This choice is simplified by the fact that
interactions amoung the p components are absent, as if
only a transport PDE in a scalar variable u were to be
solved. However, the choice could be made differently
for different components k, if variations among the
P(k) dictated this. For transport dominated by
diffusion, one might choose SOR (successive
over-relaxation) iteration, using an estimated
acceleration parameter w if possible, or simply using



w=1 (i.e., Gauss-Seidel iteration) otherwise. The
number of SOR iterations could be fixed or based on a
convergence test. Alternatively, it may be more
effective to use symmetric SOR (SSOR), where each
iteration has a forward sweep through the q points
followed by a backward sweep. In special cases, a
direct solution of the system may be possible. For
example, for simple diffusion on a uniform mesh, a fast
Poisson solver may be applicable.” To see this, write

p k) (k) o (k) _ pg g(k) (k) ,
where J(k)x(k) represen:s a scalar discretized
diffusion operator a2y {identifying k) as the
discretization of a scalar function u), and then regard
P(k) x(k) = b(k) as a discrete form of the scalar
Helmholtz equation

Au + Azu =5,
vhere A = -l/hﬂod and s is a source function
whose discrete form is Xb(k). Solvers using FFT
techniques are available for discretizations of (4.7).

If only one or the other of the two processes
(reaction and transport) is dominant in causing
stiffness in the problem, the best approach would seem
to be to use only a single preconditioner based on that
process, However, if both are important, and
preconditioners Pl and P2 can be formed
economically for the two processes considered
separately, then using both is Tikely to be better than
using efther one alone. One could precondition with
P.l on the left and P2 on the right, or the reverse,
or their product (in either order) on one side only;
there seems to be no clear best choice. In any case,
the resulting preconditioned iteration can be regarded
as a combination of Krylov iteration and operator
splitting, since the use of the Pk amounts to
applying each of the two operators present (reaction

and transport) separately, while the Krylov iteration
(whether GMRES or another method) is to account for the

errors committed thereby. If in general we write y=f
= f, + f, and compute dy = Bf]/ay and J, = 3f2/3y,

then the operator splitting preconditioner is the
product (I - hB J;)(I - hB J,), while the true Newton
matrix is I - hBo(J] + Jz). A traditional operator
splitting approach would proceed without accounting for
the difference between these two, but here we demand
convergence of the Krylov iteration that is driven by
that difference.

(4.7)

5. Implementation

The general purpose initial value ODE solver LSODE
{10,11] contains BDF methods for stiff problems and

Adams methods for nonstiff problems, with direct full
or banded treatment of the Jacobian. An experimental
variant of LSODE called LSODPK was written with
preconditioned Krylov methods substituted for the
direct matrix solvers. In additfon to GMRES, LSODPK

“contains methods denoted I0M (Incomplete

Orthogonalization Method), PCG (Preconditioned
Conjugate Gradient), and SPCG {Scaled Preconditioned
Conjugate Gradient), all with scaling and
preconditioning, but in general these offer no
advantages over GMRES. The structure of LSODPK is
analogous to that of LSODE (see [5] for details). The
user must supply a subroutine F for f(t,y) as in LSODE
(the name is arbitrary). In addition, the user

supplies two routines, with dummy names JAC and PSOL,
to provide the preconditioning. JAC is to compute and

preprocess any Jacoblan-related data used, and PSOL is
to compute the solution of linear systems P'x = ¢ or
sz = ¢ with preconditioner matrices Pk as needed.

Thus if some part of the Jacobian is to be used to form
a preconditioner, it is evaluated and LU factorizations
are done (if appropriate) in JAC, while the backsolve
and/or iterative operations to effect the PE] are

done in PSOL.

Several details are necessary to complete the
description of the SPIGMR algorithm of Sec. 3, as used
in LSODPK. First, we take the initial guess vector to
be X, = 0, as no clearly better choice is readily
available. The difference quotient approximation (2.6)
to F;(x)v becomes

Av =v - hBo[f(t.y+0v) - f(t,y)1/o
witht =t , y=a + Boxn(m). and a value of
o= ]/"v"HRMS' The limit znax on Krylov
iterations and the incompleteness parameter p are set
to lmax = p = 5 on default, but both can be reset
by the user. The convergence test constant § is the
product & = §;c; of a heuristic constant
6,, set to .05 on default (but optionally set by
the user), and the tolerance constant € that fis
imposed on the error in the solution of the nonlinear
system Fn(x) = 0 (see [4] for details). Finally, the
orthogonalization in Step 2(b) of the algorithm is done
by a modified Gram-Schmidt procedure, with conditional
reorthogonalization if roundoff effects are severe.

While the LSODPX solver, as it stands, leaves the
choice and details of the preconditioning entirely up
the user, we have written some modules to achieve the
various choices that are natural for MOL solution of
PDE's on a rectangular grid in two dimensions. One
JAC/PSOL pair uses the total block-diagonal part of the
Jacobian. Another uses the reaction-only Jacobian
together with a fixed number of SOR (actually Gauss-
Seidel) iterations on the transport contributions. A
third uses the reaction-only Jacobian and a fast
Poisson solver (HWSCRT [16]) for the discrete diffusion



operator. Three other pairs do the same as these three
but with block grouping. The grouping is specified by
a static Cartesian product partitioning of the 2-D
mesh. Work on dynamic grouping schemes 1s in progress.
The work space storage required by LSODPK, excluding
small fixed-size arrays, is 17N words plus the storage
needed for preconditioning, when SPIGMR is selected and
default values of all parameters are used. This figure

includes LpayN = 5N for the Krylov subspace basis
vectors. Tﬁus in order to keep storage under control

for large N, it 1s important to avoid increasing
Lmax by much and to use preconditioners that do not

require excessive storage.

6. Example Problem

Tests on a variety of reaction-transport problems
are documented in [4] and [5] and show both the effec-
tiveness and some Timitations of the methods in LSODPK.
We found that without preconditioning, success of the
methods correlates with tight clustering in the
spectrum of the system Jacobian, whereas carefully
preconditioned methods are effective on a wide class of
problems.

We present here only one of the test problems from
[5]. 1t is a multi-species food web model [3] in which
wutual population competition and predator-prey
interaction and diffusion are simulated in a 2-D
domain. For a model with s species, the equations in
¢ = (c!yurnsc®) are

aci/at « ci(bi + Eaijcj) + diV’c’ (i=1,...,5). (6.1)

For the tests, we choose a model with 10 prey and 10
predator specles (s = 20), with coefficients

a.” = '1 (" = ],...,ZO)
ay -5:10"7 (1 <10, j > 10)

8" 10* (i> 10, <10

bi = 1 + 50xy, di =1 (i<10)
bi = -(1 + 50xy), d; = 05 (i >10)

(a1l other 3y = 0). The spatial domain is the square
0 < x,¥y < 1, and the boundary conditions are all of
Neumann type (zero normal derivatives). The relevant
time interval (to reach a steady state) is 0 <t < 10.
Initial conditions are given by the polynomials

c'(x,) = 10 + i6x(-x)y(1-T (1 <4 <20 .
We discretize the PDE system {6.1) on a simpTe

regular 12 x 12 mesh with standard central difference
representations of V2c! and the boundary conditions.
The resulting ODE system has size N = 20-12-12 = 2880.
It is stiff because of both the interaction terms and
the diffusion. The strong dependence on xy in the bi
produces a wide spread in the steady state values, and
ir the spectrum of the Jacobian., The tolerances used
ir. these tests are RTOL = 10°% and ATOL = 1078.

We show here test results for three preconditioners,
denoted RO, BD, and 0S, and described as follows:

RO: reaction-only Jacobian, given by Eq. (4.4),
calculated from difference-quotient approx-
imations, giving a right preconditioner Pz
(Py = 1.

BD: block-diagonal part of J, given by Eq. (4.5),
also calculated by difference quotients, giving a
right preconditioner P, (P, = I).

0S: operator splitting, using 5 Gauss-Seidel
jterations on the diffusion terms as a left
preconditioner P, (following Eq. (4.6)),
together with the reaction-only Jacobian (by
difference quotients) for a right preconditioner
Pye

Note that the preconditioner in BD 1s equal to that in
RO plus the contributions of the diagonal transport
coefficients. In all three cases we tested these
preconditioners both with and without block grouping.
Grouping into 36 or 16 groups was done simply by
partitioning each direction in the 12 x 12 mesh into 6
or 4 uniform groups.

In perforning tests with LSODPK, we collect the
following statistics:

NST = number of time Steps

NFE = number of f evaluations

NPE = number of preconditioner evaluations (and of LU

factorizations of block-diagonal matrices)

NNl = number of nonlinear iterations

NLI = number of linear iterations

NPS = mmber of preconditioner solves (of calls to

PSOL to evaluate vectors P;‘v)
AVDIM = NLI/NNI = average Krylov subspace dimension
L in SPIGMR algorithm
RT = run time (CPU sec) on a Cray-1 computer
The ratio AVDIM, or the analogous ratio restricted to a
subinterval in t, is useful in measuring the success of
SPIGMR. If it comes close to L . (= 5 here}, then the
performance of SPIGMR would probably improve if either
lmax were increased or the preconditioning were
improved. The counter NFE is equal to NNI+NLI+Y (plus
the number of internal restarts at order 1, if any).

Test results for this problem are tabulated in Table
1, as a function of the preconditioner chaice PRE and
the number of groups NGR in the block grouping scheme,
if used. All of the choices shown were successful.
Other runs (not shown) without preconditioning or with
only a Gauss-Seidel preconditioner were unable to
finish this problem in a reasonable time. Runs with
the BD preconditoner applied on the left seemed to do
no better nor worse than those with it on the right.
Runs with a fast Poisson solver in place of Gauss-
Seidel in QS were considerably slower than 0S for this
probiem. Runs with the diagonal Jacobian blocks
supplied in clased form (instead of difference
quotients) were up to 20% faster,



TABLE 1., Test Results

PRE NGR NST NI NI NPE AVDIM RT
RO - 318 363 658 40 1.81 41.9
" 36 330 380 776 43 2.04 37.1

16 365 432 1044 50 2.42 45.0
BD - 331 380 738 42 ].94 46.8
" 36 323 kYA 715 42 1.93 35.3
" 16 324 378 754 45 1.99 34.8
0s - 322 367 466 39 1.27 46.6
. 36 323 368 518 40 1.41 39.9
. 16 327 373 560 40 1.50 39.9

A1l of the choices produce about the same level of
accuracy in the solution. Without grouping, all three
preconditioners give about the same statistics, except
that 0S has a significantly lower value of NLI and
hence AVDIM. That is, using both the reaction Jacobian
and all of the diffusion coefficients in the
preconditioning is more helpful in achieving
convergence of SPIGMR than any of the less complete

choices.
By itself, the AVDIM figure 1s somewhat deceptive

here, however, because it is an average of small values
early in the run and large .values near the end. In
fact, in all of the runs on this probleh, the interval
average ANLI/ANNI was equal to Lgax = 5 exactly

for the interval 4 <t < 10. But Ehe various cases
differed in their behavior in this interval in that the
relatively poor choices suffered from more reductions
in step size, forced by convergence failures in SPIGMR,
while the better choices had few or no such step size
reductions.

The effect of block grouping is to reduce the cost
of computing parts of the Jacobian, at the expense of a
somewhat slower rate of convergence of the SPIGMR
iteration (reflected in NLI and AVDIM)., The tradeoff
is beneficial in run time until the number of groups is
too small. Here 36 groups appears to be optimal for
RO, 16 groups for BD, and either value for 0S. The
least costly choice of all was BD with 16 groups,
showing a beneficial tradeoff relative to 0S from less
costly preconditioning in return for slower
convergence, and also showing a s1ight advantage in
convergence speed over RO from the inclusion of the
diagonal diffusion coefficients.

The storage costs are reduced considerably with
block grouping. The total of the work space lengths is
109,533, or about 38N for any of the three precondi-
tioners without grouping. With 16 groups, this is
reduced to about 19.4K, or nearly halved. The portion
of this space devoted to preconditioning is reduced
from 21N without grouping to (7/3)N with 16 groups.
This savings in storage increases roughly as p° as
the number of species p increases. On the other hand,
in a problem like this, where many of the Newton itera-
tions require the full 5 {iterations in SPIGMR, it is
1ikely that run times could be reduced by increasing
Lmax above its default value, but this would impose a
corresponding additional storage cost of (f..~5)N.

For comparison, consider a solution of tﬂ?s problem
by a more traditional approach, using LSODE, where a
direct band solver would be applied to the linear
systems. In this example, the half-bandwidths of the
matrices are ML = MU = 2012 = 420, and the total work
space required is roughly (11 + 2ML + MU)N = 1271N.
This exceeds the LSODPK figure (with SPIGMR and 16
groups) by a factor of more than 65, and it goes up
roughly as 3-p*M-N for p species on an HMx!l mesh.

For a problem of this type, even if the storage
requirement were not prohibitive, the computational
cost (for the band matrix solves) would be.
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