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ABSTRACT

Stiff ordinary differential equatjons (ODE's) can now be solved more or
less routinely. This review is intended for the user who is interested in
learning how to solve these systems of equations. Consequently, this review
explains what stiff QDE's are and where they arise. It tells what 1s ex-
pected of the software and sketches how 1t warks. So, several tried and true,
as well as experimental, numerical methods are outlined. Perhaps the most
salient feature is a set of examples that have been compiled during the last
fifteen years. These examples include several prototypical problems. The
problems are deliberately tractable in size, yet display features of much
larger problems in science and engineering. In e&ch case, the choice of the
software package, the ODE solver, is given. The§e-choices are based on the
authors' combined experience and take into account pfoblem structure.

This then is a brief handbook which could be used to learn or to teach
the pragmatics of numerically solving stiff ODE's. This work should be useful

to 1ine scientists, scientific computing managers, and to students.
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1. INTRODUCTION

Software for stiff systems of ordinary differential equations (ODEs) has
enjoyed a wide range of acceptance during the past decade. As a consequence,
its impact has been substantial in the physical sciences and in eng1;eer1ng.

The intent of this paper is to give a reviéﬁ of modern methods and
software solvers that are currently in use for stiff ODE systems. We also

give examples showing both the challenges to the software and the capabilities

of the solvers. .
In the remainder of this section, we discuss ODE forms, stiffness,

problem structures, and other features ar1s1ﬁg in stiff systems of interest.
In Section 2, we survey the basic methods that are used, with some comments on
their relative merits. Sectton 3 is a description of avatlable software for
stiff systems, as far as we are aware of it. In Section 4, we give ten
example'prob1ems tn detail, followed by descriptions of their soluttons using
available solvers. Section 5 mentions some related developments, and Section
6 summarizes the paper. We expect the reader to choose those parts of the

paper that are of greatest interest.

A. ODEs in Normal Form and an Example

We begin with the canonical first order inftial value problem and

discuss problems in other forms later. We represent the first type as



§y=1(ty)s to <t < tinal (1.1)
¥(to) = ¥ (1.2)
where:
N 1s the number of scalar first order ODEs.
t is the time-11ke independent variable.
y = [yl,¥2,..., YNIT 1s the column N-vector of dependent
variables, and the superscript T denotes vector transpose.
* = d/dt denotes differentiation with respect to t.
f is a N-vector valued function of y and t.
to 1s the initial value or starting value and is given.
. tfinat 1s the final value of the interval of 1ntegrat1;n.
Yo is the initial value N-vector.
In terms of the components of (1.1) and (1.2), we have
gl = £ (t, yly, 2., 0M)
yito) = ¥l
for 1 = 1,2,...,N.

As an example of a system of stiff ODEs, we borrow a model of a chemical
reaction which has been described in several places [Robertson (66)] [Byrne,
et al. (77)] [Hindmarsh & Byrne (76a)] [Enright & Hull (76)] and can be
described as a reaction of the type:

Al —_'—)AZQ 0-04

A2 + A3——s A}, 104
2hy ————3 2A3, 1.5 x 107



yl = - 0.04 yl + 104y2y3
¥2 = 0.04 yl - 108y2y3 - 3x107y2y2 (1.3)

y}(0) =1

y2(0) = 0 (1.4)

y3(0) =0
This reaction 1s interesting because the reaction rate coefficients (the
constants on the right hand side of (1.3)) vary over nine orders of magni-
tude. Moreover, it can be shown that as t 3 =, y1 30, y2 3 0 and y3 » 1.
Also, by looking at the system or by an appropriate computation [Hindmarsh &
Byrne (76a)] we can see that the dominant equation at equilibrium is
§2 = -108y2, Note that for any choice of initial Qalue, the solution of
this equation 1s a strongly damped exponential which is typical of stiff

systems.

8. The Notion of Stiffness
We can now turn to the concept of stiffness. We will first give a

rough notion and then (in the next subsection) a more precise one.

A prototypical stiff differential equation can be given by
¥ = -10°[y-exp(-t)] - [ exp(-t)] 0 < t & teyry (1.5)

¥(0) = 0 (1.6)
where y is a scalar. The exact solution of this problem is,

y(t) = exp(-t) - exp(-103t) (1.7)
and is seen to be comprised of two components, one of which (exp(-103t))

varies much more rapidly in t than the other (exp(-t)). For this problem,
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the notion of stiffness can be formalized somewhat if the time constants
11=10~3 and tp=1 are introduced. Note that at t = 11, the fast component
is exp(-10311) = exp(-1) and the slow component at t = 12 1is exp(-13) =
exp(-1). These time constants correspond to values of t for which their
respective components have the value exp(-1). Stiffness in this problem
1s caused by the presence of a small decay time constant zj.

For t smaller than several times as large as tj, the fast component
makes significant contributions to the value of the solution. This range
of values of t is often called the transient interval. If the range of
1ntegration is restricted to the transient interval, we would not need to
resort to any special numerical methods of integration, and the probiem
would not be considered stiff. However, beyond the transient interval,
the value of the solution 1s essentially the value of the slow component. -
Yet the presence of the fast componenf (even though fully decayed) forces
the use of either a very small step size (comparable to v1), if a tradi-
tional explicit method 1s used to solve (1.5) -(1.6), or else a stiff
solver. Beyond the transient, the problem is stiff.

Thus the stiffness 1s determined by the range of integration, 1.e.,
by tfina}- The value of t2 would dictate that tfyna} 2 1 for a complete
picture of the solution, but a smaller value might be posed instead. In

" any case, a quantitative measure of the stiffness of this prototype
problem 1is

S = tfinal/1.
If S 1s on the order of 1000 or larger, we would certainly regard the

problem as stiff. If S is less than 10, the problem would be non-stiff.
The intermediate values of S would correspond to problems whose descrip-
tions would range from non-stiff, through mildly stiff, to stiff. The

numerial values are valid, but the transition from non-stiff to stiff .is

not sharply defined.
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The same kind of observation can be made of the kinetics problem
(1.3) - (1.4), but the stiffness is somewhat less transparent. Recall
that near the equilibrium values, the second equation reduces approxi-
mately to the simple ODE y2 = -10%2, which has an exponential decay
time constant of © = 10~4. On the other hand, a complete picture of the
approach to equilibrium turns out to require integrating to about t = 107.
Thus we again have a rapid decay time constant that is -much shorter (or
smaller) than the time range tfinaj, and 1t is clear that we are looking
at a stiff system of ODEs. In both cases, the essential features of a
étiff system have been captured: disparate time constants, an interval
of integration several times longer than the shortest time constants, and
an approach to the steady state that does not involve rapid oscillations.

There have been several definitions and descriptions of stiff systems
of ordinary differential equations given, e.g. [Shampine & Gear (79))
[Byrne & Hindmarsh (77)] [Price, et al. (66)] [Curtiss & Hirschfelder’
(52)]). Perhaps the most pragmatic way to determine the stiffness of a
system of ODEs 1s simply to solve it with'a non-stiff differential equa-
tions package such as ODE [Shampine & Gordon (75)], DVERK [Hull, et al.
(76)] or DERKF [Shampine & Watts (80)], to name but a few. Then, record,
the cost of solving the problem. By the way, it would be prudent to impose
a 1imit on CPU time or the number of function evaluations. Similarly,
solve the problem with a stiff ODE package such as LSODE [Hindmarsh (80)],
DGEAR [IMSL (82)] or EPISODE [Hindmarsh & Byrne (77)] or an appropriate
relative. Upper bounds on the cost should again be imposed. Now compare
the costs of the two solutions over the same time interval. If the stiff
0DE solver was substantially less expensive to use than the non-stiff
solver, then the problem was stiff. If the non-stiff solver was the less

expensive, then the probiem is non-stiff. Between these extremes are
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mildly stiff problems and, perhaps, other categories. We have not ad-
dressed here the idea of appropriateness for non-stiff solvers on parts of
the interval of integration and stiff soivers on other subintervals.
However, this 1ssue is now addressed by some packages that switch method-
ologies through a stiffness detector [Petzold (83b)].

To 11lustrate this empirical determination procedure, cons1der
the solutfon of (1.5)-(1.6) by DERKF (a nonstiff/ODE solver) and by LSODE
(with a stiff method option). We pose the same error tolerances (absolute
error tolerance = 10‘5) for both, and ask for output at t = .001, .01, .1,
1, being careful to constrain the number of internal time steps to 500.
The results are as follows: DERKF completed the problem at a cost of 1876
evaluations of f, while LSODE completed 1t with 136 (including those for
evaluating af/ay). The run times were in a ratio of about 2.4 to 1. Both
solutions had f1ée digits of accuracy at all output times. But the higher
cost of the solution from the nonstiff solver clearly indicates that the '
problem is stiff. For other problems, the cost (run time) ratios may be

significantly larger. Shampine (85) ines further empirical measures.

The Connection Between Stiffness and Stability

The notions of stiffness and stability are related. Let us briefly
review how [Byrne & Hindmarsh (77)] [Shampine & Gear (79)]. Suppose we
have two distinct solutions of (1.1), say y and w. Then

y-w=f(t,y) - f(t,w)
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If we neglect higher order terms, then

y-w=fy (t,w) (y-w)

If we assume that y-w is sufficiently small, in an approximate sense, then

y-u=d (yw)

where J = fy is the Jacobian matrix given by

= 2 )
)

Here, Jij is the element of J in row 1, column j. We assume that J is
locally a constant. If J is a st;ble matrix (all eigenvalues of J have
negative real parts) then y-w 2 0 as t 9 o. If we reevaluate J as t
increases, and require that each J be locally constant and a stable
matrix, then it follows that y and w tend to @he same rinite funcﬁ1on as t
3 o, That 1s, (1.1) is stable. dy stable, we mean that given any two
particular solutions y and w of (1.1), they tend to the same finite func-
tion as t » ®», (Other kinds of stability are also important, but this 1s
the one needed here.) The copnection between stiff ODEs and stable ODEs
is this: Stiff ODEs are extremely stable, in that there is at least one
eigenvalue with a large negative real part. In faci, they can be called

syper-stable [Shampine & Gear (79)].
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A more rigorous definition of stiffness was alse given by Shampine
and Gear (79):

"By a stiff problem we mean one for which no solution com-
ponent is unstable (no eigenvalue [of the Jacobian matrix}
has a real part which is at all large and positive) and at
least some component is very stable (at least one eigenvalue
has a real part which is large and negative}. Further, we
will not call a problem stiff unless its solution is slowly
varying with respect to the most negative part of the eigen-
values....Consequently a problem may be stiff for some in-
tervals and not for others.”

By this definition, non-negative real parts in the spectrum of the
Jacobian matrix are acceptable, as long as they reflect neutrq? or slowly
growing modes in the mathematical model. Further, these modes must also
stay within reasonable bounds over the time interval, to < t < tfinal,
of 1qterest. and must be slowly varying compared to the most strongly
damped mode.

To 1llustrate this point, the scalar example (1.5) has one eigen-
value, 3y/3y = -103. By (1.7), the solution beyon& the transient is
essentially exp(-t). It is indeed slowly varying with respect to
exp(-103t). By contrast, if we replace the forcing function exp(-t) by
_ (for example) sin(100t), the solution no longer varies slowly relative to
the strongly damped mode, and the problem is not stiff.

The latter point relates closely to a common misunderstanding of
stiffness. Problems which have undamped high frequency oscillations in

the solution, whether attributable to forcing functions or to eigenvalues
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with large imaginary parts, are called stiff by some authors. We {and
most authors) do »nof call such problems stiff. One reason is that highly
osc111atoéy problems require numerical approaches that differ radically
from those for stiff problems. .

The above definition leads to a quantitative definition of a stiff-
ness ratio, matching that used in the simple example earlier. We simply
need to identify the efgenvalue A with the largest negative real part,
define the smallest time constant to be « = -1/Re (1), and define the
stiffness ratio to be

S = (tfinal - to)/t (1.8)
Unfortunately, this is also not a precise definition, because in general <
varies along the solution. We can only use (1.8) in a local sense,
applying it to subintervals where t is essentially a constant.

Now, let us return to the kinetics model (1.3)-(1.4). Some compu-
tations show that one associated eigenvalue is always 0. (The simplest
way to see this is to note that yl+y2+¢3 = 0, which in turn tells us
that mass {s conserved.) Moreover, at equilibrium (as t @ =), the eigen-
values are 0, 0, and ~104-0.04. Thus the problem is certainly stiff {f
tfina) Is of order 1 or larger. By extending the notion of stability we
examined earlier to include neutral stability (eigenvalues equal to zero),
we can also show the problem is (neutrally) stable. If, however, we numeri-
cally perturb the asymptotically zero eigenvalue to a positive value, then
the problem can become numerically unstable. This instability can arise
through numerical round-off or insufficiently stringent error control.
This feature makes this problem computationally challenging 1f we want to
solve it for large t. [Hindmarsh & Byrne (76a)] [Curtis (78)]
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Stiffness and the Method of Lines
So far, we have seen that stiff systems of differential equations

arise directly from a model. However, they can also arise in another way
-- the spatial discretization of parabolic partial differential equations.
As an t1lustrative example, we take the one dimensfonal heat equation,

ut = Duxx, 0 ¢ x <1, 0 <t < tFina

L(u(0,t), uy(10,t)) = 0, R{u(l,t), uy (1,t)) =0 (1.9)

u(0,x) = ¢(x)
Here subscripts denote differentiation, u is the dependent variab1e,.t is .
time, D is the diffusion coefficient, and x denotes spatfal position.
Moreover, L(0,t,u{0,t),uyx(0,t)) = 0 is the left boundary condition, while
R(1,t,u(l,t),ux(1,t)) = 0 is the right boundary condition.

We can reduce {1.9) to a system of ODEs by a number of spatial dis-
cretization techniques, such as Galerkin's procedure in conjunction with
B-splines, collocation in conjunctfon with B-splines, or other finite
element techniques. Here, we simply replace the spatial derivative with a
three point, second order difference scheme and use the N+2 uniformly
spaced grid points, '

xy = 1/(N+1), 1 = 0,1,...,N+1
Also, for simpiicity, let us take the boundary conditions to be of
homogeneous Dirichliet type: u=0at x=0and x = 1.
The system of ODEs is then

y=Jdy, (1.10)
y(0) =& (1.11)
where

y = [yly?,.. . AT
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and
yi = u(xq,t)
J = [D/(ax)2] tridiag (1,-2,1] (the NxN tridiagonal matrix)
Ax = 1/(N+1)
® = [0(x1)s 0(x2)seos0(xN)]T

The eigenvalues of J are given by [Varga (62)]

-2D kn
A & —~—— (1+ cos )’ k=1.2.....ﬂ
k (ax)2 N+1

For N large, the largest eigenvalue (in magnitude) can be approximated by
A1 & -4N2D
while the eigenvalue with smallest modulus can be estimated by
AN ® -%2D ‘
The neg;tive reciprocals of these eigenvalueé correspond to the time
constants for the system of ODEs. Again, if tfipal deﬁotes the length of
the interval of integration, then the stiffness ratio for the system of
ODEs 1s, by (1.8),
S = 4tfina1DN2
So, for éxample, if tfina} D =1 and N = 100, this proﬁlem would be stiff.

Linearly Implicit ODEs, Differential-Algebraic

Systems and the Method of Lines

If we use a Galerkin or collocation procedure for (1.8) in
conjunction with B-splines, then the system of ODEs has the general form

[Strang & Fix (73)] [Leaf & Minkoff (84a), (84b)]

Ay = Jy ' (1.12)

y(0) = ¢ (1.13)
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Now, the vector y 1s comprised of the coefficients of the expansion of

the approximate solution

N
u(x,t) =1§1 yi(t) By(x)

in terms of the B-spline basis functions B4y. The initial values for the
coefficients are determined by a projection of the initial profile into
the approximate solution space.

In the case that L and R in (1.9) prescribe esseptial boundary condi-
tions, e.g. u(0,t) and u(l,t) are prescribed, A may be a singular matrix,
with zero rows corresponding to equations that prescribe u(0,t) and
u(l,t). Consequently (1.12) may be a differential-algebraic system, which
{s comprised of both implicit ordinary differential equations and

algebraic equations. If L and R in (1.9) describe natural boundary
conditions,

e.g., %% (0,t) and %% (1,t) are prescribed, then (1.12) is a system of

implicit ordinaf& differential equations and A 1s nonsingular. This is
because the variational representation (the weak form representation)
imposes no constraints on the approximate solution.

This example indicates the flexibility required in the underlying
software in partial differential packages such as POST [Schryer (77)],
DISPL2 [Leaf & Minkoff (84a) and (84b)], and PDECOL [Madsen & Sincovec
(79)]. These and several other packages automatically implement spatial
discretizations to the user's specification. This technigue is called the

numerical method of lines [Madsen & Sincovec (74)]. We also point out
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that uniform grids are not required for hand discretizations or by the
good method of lines codes. Indeed, some experimental codes dynamically

adjust and/or insert grid points to model fronts and other phenomena. This

dynamic adjustment may revise the form of (1.12).
Differential-algebraic systems arise in many other ways also. A few

are described in [Sincovec et al. (81)].

F. Problem Structure
One key to effectively using stiff ODE solvers 1s the use of the

appropriate package to take advantage of the structure of a problem -~the
coupling of the dependent variables. To give some idea of the signifi-
cance of problem structure we have seen run times reduced by factors of 20
to 200. How? The user appropriately ordered the dependent variables and
chose the software package to handle the resulting structure. We now
address several structures in turn.

One type of problem we have talked about is the dense systam or
eguations In normal form. That is, each ODE is coupled to most of the
dependent variables and the system {s in the form (1.1)-(1.2). An example
of such a system is (1.3)-(1.4).  Larger dense systems are quite common.

We have also seen a simple PDE (1.9) which led to a differential
equation in normal form but with a tridiagonal Jacobian. In the case of a
single nonlinear parabolic POE, the Jacobian would éenera11y be banded.
(The bandwidth would depend on the discretization.) That 1s, Jij = 0 for
1-J >M_ and j-1>My. Here, My and My represent the lower and upper half
bandwidths of J, respectively. In the case of (1.10) M =My=1. The idea
is fairly straightforward. We only need to store the elements within the

bands formed by the M_ subdiagonals, the main diagonal, and the My
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superdiagonals of J. We can also apply this idea to systems of PDEs in
one spatial dimension. Such systems can also be treated with codes using
block structured Jacobians.

Banded Jacobians also arise in systems of ODEs describing networks in
which only a small, fixed number of near neighbors are coupled in a
prescribed way. A good example of this is a series of stirred tank
chemical reactors.

Linearly implicit ODfs in the form (1.12)-(1.13), generalized to

nonlinear dependence on y, take the form
Ry=g(ty), t; £t < trinal (1.14)

y (tg) = ¥, (1.15)

In this form, A is an N x N coefficient matrix and g is an N-vector valued
function. Here A = A (t,y) is allowed. Systems of this type do arise
from finite element methods. However, they also arise from the finite
difference treatment of linearly implicit PDEs, which occur in o1l reser-
voir models [Gottfried (65)] [Douglas (70)] [Peaceman (77}]. In the case
of PDEs in one spatial dimension, A and gy are usually banded.

Block structured Jacobians arise in ODE§ in normal form (1.1)-(1.2)
in the solution of systems of PDEs in two or more spatial dimensions. By
block structured, we mean that J can be partitioned into submatrices or
blocks of size n x n. Most of the blocks are non-zero. However, the
non-zero elements occupy a few blocks, usually in a discernable structure,
but not necessarily tightly packed together. In two dimensional PDEs,
there usually {s a block-banded structure (blocks of nonzero elements are
usually banded about the main diagonal), a few outlying block diagonals
and, perhaps, a few block columns or rows have nonzero elements. Such

systems can also arise in networks of various types.
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We note that block structured 1inearly impliicit ODEs (1.14)-(1.15)
also arise in solving one dimensional PDEs by finite element methods.

Normal form OOfs with sparse Jacobians occur in PDEs on irregular
geometries, certain loosely coupled networks, and some chemical kinetics
models involving a large number of species or compositions. In general, a
sparse matrix is a matrix with a very small percentage of nonzero
elements. A general sparse description of the Jacobian is appropriate
when the nonzero elements form no readily discernable pattern of the types
discussed previously. Alternatively, 1t may be appropriate when the pat-

tern 1s such that there is no neat way to take advantage of the structure,

e.g. no handy software package.

Active Time Scales

_ Modern software packages for ODEs are capable of handling a broad
spectrum of problems and problem features. So, let us see what some of
these features are.

Contrary to the perceptions of some writers, stiff problems do not
always have a single transient region. There may be several regions in
which transient phenomena occur. That 1s, there may be recurring
transient regions or regions where the problem is non-stiff followed by
regions where the problem 1s stiff. We were introduced to problems of
this type through the solution'of chemical kinetics models of certain
minor species in the upper atmosphere {Gelinas (74)] [Dickinson & Gelinas
(76)] [Byrne & Hindmarsh (75)] [Byrne, et al. (77)]. The model is called
the Chapman mechanism. Its features include very rapid changes in the
concentrations of minor chemical species. These changes correspond to the
rising and the setting of the sun, since the reactions are simply related

to photodissoctation. To our knowledge, Gelinas and Dickinson were the
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first to solve this problem without restarts or averaging in 1973, using a
prototype of EPISODE [Gelinas (74)].

Another model which 1s in some sense of a similar nature to the
Chapman model is the Field-Noyes model of a chemical oscillator [Field &
Noyes (74)]. A chemical oscillator is a chemical reaction which takes
place in such a way that the concentrations of the chemical species in the
system vary periodically in time. In the case of the Field-Noyes oscilla
tor, the concentrations of the three species vary in such a way that the
three time scales of the reactions are very evident and disparate over
each.per1od of the reaction.

Other forms of periodic transients do occur in 0ODEs. Consequently,
solvers must accommodate these phenomena. They must also handle traveling
waves. Let us see how traveling waves arise and why they must be handled.

In various applications of engineering and science we find time de-
pendent PDEs involving convection, diffusion, and reactions. In this
work, we shall assume that the cell Peclet numbers are small, say 10 or
less. However, we have used MOL packages and techniques to solve
non-diffusive systems. For many of these PDEs, the solutions have fronts
in the vartables which gorrespoﬁd to temperature, concentrations,
saturations, density, or some other physical entity. We are quite often
interested in the variation in time and/or space of a wave front. This
could correspond to a reaction front, flame front, or leading edge of a
phase. Although these spatial discretization and front tracking issues
are important, they are not within the scope of this paper. The
challenge, in general, is to develop an economical, reliable, universal
strategy for tracking fronts. The challenge for ODE software, in
particular, is to accommodate this strategy.

In the next section, we will discuss the numerical methods which are designed to

handle these phenomena and features.
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2. SURVEY OF METHODS

Software for ODE initial value problems has progressed to a point where,
in most cases, the user needs to know 1ittle or nothing about the metods on
which the software is based to get reliable answers economically. The user
simply follows a set of usage instructions, perhaps experimenting a 1ittle
with input parameters, unti) sat1sfactony results are obtained. However,
these instructions and the requirements imposed on the user vary greatly among
solvers. The reasons for this relate largely to properties of the underlying
methods. Consequently, 1t is helpful for users to have some f?m111gr1ty with
the methods 1n the software packages. Moreover, ODE problems with special
features often cannot be fit into the available software without modifications
to the latter, and this situation certainly requires a knowledge of methods.
Finally, we recognize that the last word on ODE methods has not been said, and
a familiarity with current methods 1s valuable in assessing new methods that
appear in the 1iterature from time to time. Some of the methods we mention,
which are not yet available in production software form, may someday appear in
highly effective software.

Other surveys of ODE methods have appeared occasionally. Two recent ones
are [Seward et al. (84)] and [Gupta et al. (85)].

For these reasons, we give here a brief survey of the numerical ODE methods
that are currently used in the more popular and successful 0DE (initial value)
solvers, both stiff and non-stiff. We will write the problem in the simple
general form

¥ = f(t,y), ¥(to) = X (2.1)
where y 1s a vector of length N, t, and y, are given, and f is an arbitrary

vector-valued function. Modifications for the linearly implicit form
Ay = g(t,y), ¥(to) = ¥o (2.2)
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will also be described.

Linear Multistep Methods
The class of 1inear multistep methods is large and varied. We begin

with it because 1t contains some of the most useful methods for stiff
problems and also for non-stiff problems. This fact is reflected in both
the available software and the frequency of 1its use.

These and the other methods discdssed here are d7screte, in the sense
that what 1s produced 1s basically a sequence Yos Yls-+¥n... of values of y
which approximate the solution y(t) at discrete t values t,,

t1se--stp..c  In the linear mulitistep iase, these discrete values of y

are defined by a formula of the form

! )
Yy = Z o Ypg * P Z By In1t (2.3)
=1 1=0

Here §3 denotes f(tj,yj), h 1s a constant step size in t, 1.e.

h = tp-tp-1. The coefficients o4 and B4 and the nonnegative integer
constants Ky and Ky are fixed for a given method. The number K = max (Kj,
K2) is the step number, i.e. the number of past values invoIQed, and (2.3)
is referred to as a K~-step method. Note that the yj and ¥ occur 1inearly
in (2.3); hence, the name. These formulas can also be written in a form

which accounts for varying step sizes hJ = ty-ty-1. In that case, they are

written as
Ky K2
In * Z %i¥n-1 * My Z Bny Ip-1° (2.4)
=1 120



where the a and p coefficients now depend on hp,hp-1s..->hp-K+]1-
The simplest examples of 1inear multistep methods are the Euler
(forward Euler) method,
Yn = ¥n-1 + hin-1
and the b‘ackward Euler method,
Yn = Yn-1 *+ hin.
These are one-step methods (K=1), but are nevertheless included in the
1inear multistep class, as degeneratg cases, for convenfience.
The class of methods now most heavily used for stiff problems 1is that
of Backward Differenttiation Formulas (BDFs). These are characterized by

putting K2 = 0 and K3 = q in (2.3) or (2.4) above. Thus, the fixed-step
BDF of order q 1s |

q

Yp © E 94 ¥n-1 + hBFps . (2.5)
i=1

and the variable step BDF of order q is

q
I ® E %n1¥n-1 ¥ PuBno¥n (2.6)
i=1
with api and 8po depending on hp/hn-1,...,hn/hp-gs1. The case q=1 is the
backward Euler method. The name BOF comes from writing (2.5) or (2.6) in
a form that gives §, as a combination of the y,.4 (approximately).
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Among the most popular nonstiff methods are the Adams methods, which
are characterized by having only one term, yp.1, in the first sum in (2.3)
or (2.4). Thus, the explicit Adams method of order q is given by either

q
h = 1 +h Z "1-9 -1 (2.7)
1=l

or the variable-step analog of this formula, and the implicit Adams method
of order q is given by either

q-1
Yo =Yg th D By (2.8)
i=0

or its variable-step analog. The familiar Trapezoid Rulé,

Yn = ¥n-1 * (h/2)(§n + $n-1)s ' (2.9)
is the case q = 2 in (2.8). (Sbme refer to (2.9) as the Crank-Nicholson
formula in the context of partial differential equations.)

The term order 1s well-defined for 1inear multistep methods. For
(2.3), it is the largest integer q for which

K K
1 2

Yit) = D, o¥ltyq) = h D0 B3t ) = O
i=1 i=0

as h » 0, when y(t) is an arbitrary smooth function. It can be equiva-
lently defined as the largest integer q for which the Jocal error

¥n - ¥{tn) = O(h9*1) when (2.3) is used to take one step with all past
values exact (yp-§ = ¥(tp-1) for 1 > 1). In general, a method of order

q ylelds global errors yn - y(tp) = 0(hQ) when integrating from to to a
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fixed tp = t with h 2 0 (n = (t-ty)/h 9 ®). The analogous definitions and
results for (2.4) are straightforward, although the theory is complicated
by the variability of hj.

- In the practical impiementation of 1inear muitistep methods, the most
significant distinction among them is between /mp/ic/t and explicit
methods. A method given by (2.3) or (2.4) {is explicit if By =0 (¥, is
absent), and 1s implicit otherwise. For an implicit method, an algebraic

system of the form

Yy = h8yf(to.yp) + :E: (04p-q * hBiF,_ ) = hef(to.y,) + a, (2.10)
1
must be solved for y, at each step. The choice of methods for doing this
has a profound impact on the efficiency of the resulting algorithm or
solver. As f is 1n general nonlinear, an iterative procedure of some type
is usually used. The simplest such procedure is funct1ona1'(or fixed-
point) fteration,
Yn(m1) = hBof(tnsYn(m)) + 8  (m =0,1,...),

where yp(o) 1s an initial guess for yp and m denotes the interation count.
This works reasonably well for nonstiff problems, but for stiff problems
jt converges only when h is smaller than or comparable to the smallest
time constant in the system, and such a restriction on h is unacceptable
because of excessive computer run time. (For this reason, an implicit
formula combined with functional iteration is usually referred to as an
explicit method. Because of the restriction on the step size, 1t 1s
certainly a nonstiff method.)

For stiff problems, the choices most often made for solving (2.10)
are based on Newton's method. For the problem in the form

F(yn) = yn - h8of(tn.¥n) - 3y = 0,



Newton iteration takes the form

1
Ya(m1) = Yn(m) " [’y"n(m)’]' F¥n(m)
or

[1 - bsy £0t,, nm ] 1)~ ¥ nmy? = - F(Y(my )+ (2.11)

This is in general a powerful method, but has some considerable costs
associated with it. The first is that of computing and storing the
Jacobian matrix fy, and the second is in the solution of the N by N 1linear
system for the correction Yn(m+1) - Yn(m). Both costs can be reduced
greatly by modifying the iteration and paying close attention to matrix
structures. For one thing, fy need not be recomputed in (2.11) at every
{teration; 1ittle 1s Tost in speed of convergence with the use of a fixed
value of the Jacobian in the 1terations for one time step. By the same .
reason1pg, f, can be kept f1xed for several stepg, provided a test can be
made to decide when to recompute 1t. For a g1ved problem, fy may well
have a sparse structure which can be exploited to reduce the costs of
computing and storing it and of solving the system. Once a value of the
matrix

Fy = P = I - haofy (2.12)
is computed (or approximated), suitable preprocessing of it (such as LU
factorization) can be done, depending on the structure assumed, so that
the subsequent solutions of linear systems

Pay=-F
are as inexpensive as possible. By the way, some current work brought to
our attention warrants the following caveat: if the number of equations in
the system {s greater than one, then the explicit inverse [Fy (yh&m))]‘l
should not be computed. Rather, the form (2.11) should be solved by



" modern numerical linear algebraic methods. The reason is efficiency.
Regardless of the choice of iteration, an initial guess Yn(o) 1s
always needed. This 1s easily obtained by appealing to any of the explic-

it Y1inear multistep methods.

Linear multistep methods can also be applied to the implicit ODE
problem (2.2) with relatively 1ittle additional effort. An approach that
is usually highly wneconomical 1s to apply them to the equivalent system

y=fe=Alg ., |
This replaces evaluations of g with more costly evaluations of f and, what
{is much worse, it replaces matrices A and gy, which typically have a
sparse structure, with a matrix fy which is most likely dense (not
sparse). Instead, if we multiply any of the basic formulas (2.3) or (2.4)
by A(tp, ¥n) and use (2.10), we get an algebralc system of the form

. G(yn) = A(tnyn)¥n - h8og(tn,yn) - A(tn,¥n)an = 0 (2.13)

with a, as before (known). The various ways of treating (2.10) by
Newton-1ike methods in the case of an explicit ODE also apply here, in

terms of iterations of.the form

Sy(¥n(m+1)-Yn(m)] = = 6(¥n(m))- (2.14)

Thus, for example, if A 1; at most weakly dependent on y, a good approxi-
mation to Gy 1is | | .

Gy = A ~ hsogy
evaluated at some convenient point. Note the similarity to the matrix P
in the explicit ODE case (2.12). If A depends strongly on y, qy must
include other terms that involve 3A/3y. In either case, it is clear that
the cost of the major operations in a step is only marginally greater for
this approach to Ay = g than they would be for the corresponding stiff
method applied to a similar problem of the form § = f.
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Formally, these techniques also apply to the case where A is singu-
lar, i.e. when (2.2) is a differential-algebraic system (DAS), provided
that the matrix Qy is nonsingular and that all of the initial data y(tq),
¥(ty) 1s available. However, this is a very risky approach ta DASs in
general, even those of the form (2.2), without an understanding of the DAS
in question [Petzold (82)], [Gear & Petzold (84)]. The problem may be of
a type for which these ODE-based methods work well, or it may be of a type
that 1s numerically il11-posed for these methods, or even mathematically
il1-posed (independent of the method). Fortunately, it is often possible
to reformulate i11-posed DAS problems so that they are solvable with these
methods.

Returning to the Newton or modified Newton iterations (2.11) and
(2.14), the manner in which this linear system is tféated is extremely
important. In fact, the technique for storing and processing the matrix
Fy or'Gy often makes the difference betweén being able to solve a stiff
ODE system in the fast core of a computer and being unable to do so. For
example, 1f the structure of this matrix is banded, then only the elements
in this.band need to be stored and used. Other matrix structures such as
general sparse structure and block banded structure have also been taken
advantage of.

For general use, linear multistep formulas are of 1ittle value with-
out a means of selecting values of the step size h and method order q for
which the method is reasonably accurate and efficient. The algorithms for
doing this constitute a major distinction between modern ODE software and
its obsolete counterparts. These algorithms are the result of consider-
able research and development efforts, which are sti11 continuing, and

their impact on the accuracy and economy achievable with modern codes is
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often quite dramatic. A key ingredient here is that the step and order
selection is based on estimates of the actual errors comitted by the
numerical method, rather than 4 Aoc rules often used.

The basic features of these error control algorithms are quite sim~
ple. On taking a step to tp, of size h at order q, the error E(q,h)
committed on the step, according to the local error theory, is given
asymptotically by C h@*ly(a*l)(t,) for some known constant C, independent
of the problem being solved. Now we (typically) impose a condition on h
and q that some norm of E(q,h) satisfy

11E(a,h) |} < e (2.15)

for a user specified error tolerance parameter . The derivative y(a+l)
can be easily estimated by finite differences using quantities already
generated in the computation. Thus we can compute a step size hq' at
which ||E(q,h)}] is about equal to e. This is the step size considered
appropriate at order q for tﬁe current step and the next few steps. Simi-
larly, E(q',h) can be estimated for other orders q' (typically restricted
to q+1), and values hq* obtained on the same basis. Now thé code simply
chooses the order q' or q which gives the largest step size, and uses that
nnximum step size. If the step just taken failed the error test (2.15),
-the step 1s redone aécor&ing]y. At the beginning of the problem, the
order q 1s usually set to 1, for which no past values prior to y, are
needed, and the order then increases to whatever value is found to be most
effictent. The details of the various decisions, approximations, fudge
factors, etc., vary considerably, and are highly heuristic in nature. But
extensive use has shown that these jdeas work well in practice.

The selection process for h and q that we just sketched is
incorporated in various codes. An additional constraint, the requirement

of monotone decreasing differences (with respect to order), is imposed in



others [Shampine & Gordon (75)]. This 1llustrates the concept that
different underlying algorithms lead to different computational

strategies.

Runge-Kutta Methods
The class of Runge-Kutta methods 1s also wide and varied, and has a

long history. However, it is less often used in currenf software,
especially for stiff problems, and so will be summarized only briefly
here.

Runge-Kutta methods are one-step methods, but involve intermediate
stages in a step. They can be either explicit or implicit. The general

r-stage explicit Runge-Kutta method for ¥ = f can be written as

ky = hF(t,_;.¥, 4) (2.16)
1-1
ky = hF(t, _+ cohy ¥, 4 +Z aygky) (1= 2,0007) (2.17)
J=1
.
Yo=Y * D, by (2.18)
=1
1-1

where the a1j, bi,and c, are constants satisfying Cy = :E: aij .
J=
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Through rather tedious calculations, we could determine the order of
accuracy q of such a method, and arrive at coefficient values which yield
given orders (q never exceeds r). At the same time, it is often possible
to imbed a method of order g-1 within the method of order q, and this
makes a dynamic error control possible, with 1ittle added effort, based on
the difference between the two y, values.

For stiff probiems, explicit Runge-Kutta methods are inappropriate,

and analogous implicit methods have been developed. The general r-stage

implicit Runge-Kutta method can be written

.
ky = hf(t i+ c;h, y, i+ Z ay4k) (1= 1,..00m) (2.19)
J=1
r
Yo = Yoy ¥, Biky (2.20)

i=1

So, we need to solve an algebraic system in rN unknowns. Several special
cases have been studied in which this algebraic problem is less

- formidable. One is the semi-implicit case where the ma;rix (aij) is -

lower triangular and so each k4 involves solving an algebraic system

of equations of size N. A Newton-1ike solution of the equation for ki
involves a matrix of the form l-ha11fy, and a further reduction in
algebraic effort can be achieved if we take all aj4 equal - the
so-called diagonally implicit case [Alexander (77)]. Other (more
complicated) approaches have been used to reduce the cost of solving the
fully implicit case to a feasible level. One of these is that of
singly-implicit Runge-Kutta method [Burrage (78)] characterized by the
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fact that the matrix (a13) has a single r-fold eigenvalue, thereby
permitting a 1inear transformation to an algebraic system that resembles
that of the diagonally implicit case.

Runge-Kutta methods have been generalized in another direction, in
the form of Rosenbrock methods and so-called ROW [Norsett & Wolfbrandt
(79)], [Kaps & Wanner (81)]. Here terms involving the Jacobian matrix are

added to (2.19), so that 1t has the form

Ky = ME (L + b,y o+ E y J)+hJZ Ay
J=1 3=

Here J is éither af/3y evaluated at y, or some approximation to that
Jacobian, and the coefficients dy4 are chosen to optimize order and stabi-
11ty properties. Setting all the dyj equal reduces the required matrix
computation to a minimum.

Another variation on impitcit Runge-Kutta methods is the class of
mono-implicit RK methods [Cash & Singhal (82)], in which a term involving
the unknown y, is added to the y argument of ¥ in (2.17), within the
equations for an explicit RK method.

Other Methods’
The special challenges posed by stiff ODE problems have led to

searches for suitable methods outside of the traditional 1inear muitistep
and Runge-Kutta classes. One reason for including these methods is
cémpleteness. Another is that for some problems BDF does not work very
well. [In particular, for highiy oscillatory problems, BOF methods with

order greater than 2 do not work well. That said, we also warn the user



that the exotic may not be robust. We will only mention the other methods
here, as thelr value has not yet been fully assessed. The 1ist below is
intended to be neither exhaustive nor in any particular order.

1. Collocation methods. [If the solution function y(t) is approxi-
mated by a piecewise polynomial function p(t), then collocation methods
arise by posing conditions of the form

p(t) = f(t,p(t))
for a set of discrete values of t [Hulme (72)], [Hulme and Daniel
(74a-b)]. These methods can also be regarded as implicit Runge-Kutta or
block methods.

i1. Block and composite methods. 1f one 1inear multistep method 1s
used to advance from ty to ti, another from t; to t2, and so on up to t,
after which the cycle is repeated, the result is a cyclic composite multi-
step method [Bickart & Picel (73)] [Tischer & Sacks-Davis (83)] [Tendier,
et al. (78a~b)]. If instead the values at all of the points tj,...,t| are
defined by a coupled set of L equations, the method is called a black or
block-implicit method [Watts & Shampine (72)] [Andria, et al. (73)]. (See
also [Rosser (67)]), who noted the similarity of these methods to
Runge-Kutta methods. )

111. éExtrapolation. Suppose that a given basic method (usually a
one-step method) 1s used to approximate y(t) whenever y(t-H) is given,
using n steps of size h=H/n. Then an extrapolation method arises by con-
sidering the result, denoted y(t,h), as a function of h which can be ap-
proximated well (usually by a polynomial or a rational function) by means
of the data obtained from several values of h. This approximation is
evaluated at h=0 to get the final extrapolated approximation to y(t)
[Lindberg (74)] [Bader & Deuflhard (B83)]. These can be thought of as

multistage, one-step methods, akin to Runge-Kutta. For a recent review of



extrapolation methods, see [Deuflhard (85)].

iv. Muitiderivative methods. Linear multistep methods that involve
derivatives of order two or more are of interest, even though the ODEs are
first order [Enright (74)]. Their implementation requires a means of
accurately computing the higher order derivatives as well as solving the
implicit relation defining the step.

v. BIeW methods and matrixr-coerficient methods. Motivated by the
attractive features of certain second-derivative methods, a new class of
methods ~ blended multistep methods - was developed in which the formula
ts a linear combination of two f1rst-der1yat1vg formulas (e.g. Adams and
BOF), involving the Jacobian matrix in the coefficients [Skeel & Kong
(77)}. Blended formulas of an extended type are given by Cash (83). More
generally, first-derivative multistep formulas with matrix-valued coeffi-
clents have been studied [Lambert & Sigurdsson (72)].

vi. Averaging. An averaging method is one in which an integration
step (of size h) is taken with each of several linear multistep (or other)
methods, and the final answer taken to be a 1inear combination of the
individual answers [Liniger (76)].

vil. F/tting. If an integration method (such as a Tinear multistep
method) has one or more free parameters in it, and if a correspondiﬁg
number of the dominant eigenvalues of the problem can be estimated, thgn
the free parameters can be set so that the method integrates exactly the
exponential modes corresponding to those eigenvalues. The result is an
exponential fitting method [Liniger & Willoughby (70)], [Cash (81)].

viil. Aybrid methods. The features of linear multistep methods and
of Runge-Kutta methods can be combined in hybrid multistage-multistep
methods [Butcher (73), (81), (85)], [Byrne & Lambert (66)]. One can even

include multiderivative methods in such a hybrid class [Hairer & Wanner



(73)]. A large number of free parameters then has to be dealt with by way
of accuracy and stability criteria. Application-oriented hybrid methods
are also common, wherein some carefully selected components or terms of a
system are treated implicitly, and the rest explicitly.

ix. Partitioning. For problems where the stiff eigenvalues (those
with -Re(1) very 'Iar;_ge) are well separated from the rest, a number of
approaches have been studied to separate out the corresponding modes and
treat the problem as composed of nonstiff and stiff subsystems. (This is -
a decoupling by equation type.) Some involve automatic determination of a
suitable linear transformation and partition [Alfeld & Lambert (77)]
[Bjorck (83)] [Enright & Kamel (79)] [Watkins & Hansonsmith (83)], but
these are limited to the case of relatively few stiff eigenvalues.

Others are suitable when the user can specify an appropriate partition
[Eitelberg (82)] [Hofer (76)].

X. One-leg methods. A class of methods that resembles that of
classical linear multistep methods v;as introduced by Dahlquist (83), who
calls them one-leg methods [Dahlquist (83)] [Watanabe & Sheikh (84)].

They are based on formulas of the type

K - K, K,
“Co¥n" Z %4Yp-1* IF (E Bytneqs E B4Yp-1 ) (2.21)
121 1=0 1=0

with a normalization 2 31 =],

If £ does not depend on t and 1s 1inear in y, this 1s the same as a 1inear
multistep method, but for general f it may have some advantages over 1lin-

ear multistep methods.



-32-

D. Pros and Cons

Without going into too much detail about the various methods and
their implementations, it is nevertheless possible to state some
advantages and disadvantages of the various method classes of stiff
problems. Naturally, these lists depend on the problem environment. As a
general rule, for problems which are small in size and inexpensive in
function evaluations (of f or g, etc.), there is little difference among
methods 1n performance, and the main criterion for a choice should be the
convenience of acces;ing a solver and setting up the problem for the use
of the solver. At the other extreme, problems with large sizes and
expensive functions can display vast performance differences among the
various methods and solvers. The comments below are aimed at the environ-
ment in which the size and/or the expense is considerable.

Implicit 1inear multistep methods possessing suftable stiff stability
properties, including the BDF methods, have some very attractive features
for stiff systems:

(1) The method order is easily varied in a dynamic manner.
(2) The estimation and control of local error can pe done in a very inex-

pensive way. " | .
(3) The algebraic system to be solved at each step is only of size N (not

a multiple of N), and this system, namely (2.10) or {2.13), is highly

amenable to a wide class of iterative nonlinear system methods,

notably Newton's method and its variants. [Byrne & Hindmarsh (85)]
(4) In a Newton or Newton-1like solution of the algebraic system, the

Newton matrix Fy or Gy involived is related very closely to the func-

tions defining the problem, and only one such N x N matrix needs to

be stored at any one time.
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(5) The Newton matrix, and thus the problem-related matrices (such as fy)
of which it is composed, do not need to be very accurate.
Considerable errors can often be tolerated, with only a modest
compensating price in convergence speed. One consequence of this f{s
that terms in the Jacobian which are cost!} to compute but
numerically small can be discarded. Another is that the Newton
matrix need not be evaluated at every step. (See [Byrne & Hindmarsh
(85)] where these ideas were tested.) .

(6) The direct relationship of the Newton matrix to the functions defin-
ing the problem allows for the exploitation of sparse structure 1n'
the latter, with tremendous advantages'1n both storage and cost for -
large and/or expensive problems.

(7) An accurate initial guess for use in a modified Newton iteration is
available by way of an explicit formula, with the result that the
number of Newton iterations per step is typically less than 2.

Very few other methods have all of these advantages.

The chief disadvantages of stiff multistep methods stem from their
inherent multistep nature. High order accuracy requires high step number
K, hence high storage requirements, and numerous steps of smaller size
have io be taken to build up to the required order. (Alternatively, an-
other method could be used for starting [Gear (80)].) A multistep method
can also lose much of its efficiency advantage if the problem contains
frequent discontinuities; then a one-step method, which has no memory of
past solution values, has a distinct advantage. Finally, the high-order
stiff muitistep methods (especially the BDFs) have relatively poor
stabi1ity properties when the problem has high]y oscillatory modes.



Among the Runge-Kutta methods, only those of implicit type should be
considered for stiff problems. For the sake of efficiency in solving the
algebraic system of size rN (for an r-stage method), only certain implicit
RK methods are of interest. For § = f with a diagonally implicit
method, a Newton-1ike 1teration involves only a single N x N matrix of the
form I - hefy, but r different f values and right-hand side vectors. The
same result holds for the singly-implicit methods. This is much more
economical than other choices of implicit Runge-Kutta methods, but consider
ably more costly (per step) than the typical BOF algorithm, where on
average less than two f evaluations and right-hahd side vectors are
involved per step.

In favor of the implicit Runge-Kutta methods 1s their one-step na-
ture, an advantage in starting up and when crossing points of discontinu-
ity. More 1@portantly, they are able to achieve high orders and good
stiff stability properties simultaneousiy.

Most Runge-Kutta algorithms are of fixed order, but not all [Burrage
et al.(80)). HWe simply note that comparison tests, e.g. [Enright et al.
(75)], have shown that variability of order can be very important in stiff
ODE solvers. _

Collocation methodspand block methods suffer from the same ineffi-
ciencies in the algebraic system solution as the implicit Runge-Kutta
methods. In some cases, storage of several N x N matrices is required.
For composite multistep methods, a very similar difficulty arises because
of the different individual methods used. However, it is possible to
avoid this difficulty, at least for 2-stage composite methods, by choosing
the coefficients 84 to be the same in each stage [Tischer & Sacks-Davis
(83)]. With the inclusion of a variable order, algorithms based on these

methods appear to have some features superior to BDF algorithms.
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Extrapolation methods offer a natural way.of 5ch1ev1ng arbitrary
accuracy orders, but again at a high cost in the algebraic system solu-
tion. In solving ¥ = f, the Newton matrices for the individual steps
all have the same form, I - hggd, but the va1ues.of hgo vary widely among
the step seqﬁences used within each major step. Thus the costs in storage
and/or matrix operations is necessarily considerably higher (per step)
than for ordinary linear multistep methods. However, the larger step
sizes often outweigh this cost. Exactly the same comments apply to
averaging methods.

Multiderivative methods, especially second derivative methods, can be
formed with very attractiQe order and stiff stability properties. The
priée one must pay 1s in dealing with the second derivative, which for
¥ = f is given by

y = df/dt = fyy + fy = ff + fi,
and possibly with higher derivatives, if any are 1nvolved. The effect of
this on the Newton iteration is that the Newton matrix is, in general, a
complicated combination of the various partial derivatives of f. If the
system is autonomous (fy = 0), or is made autonomous, then an approximate
Newton matrix for a second-derivative methdd can be formed as a quadratic
polynomial in J = fy, and a considerable reduction in the effort to do the
Newton iterations is possible. However, the effort and storage are still
greater than for, say, BOF methods.

Blended multistep methods composed from Adams and BDF formulas appear
to have all the desirable accuracy and stability properties of second-
derivative methods, but almost none of the obstacles. For ¢ = f, the

formulas and the Newton 1ter§t10n to solve them tolerate errors in the



Jacobian matrix, and allow for the use of sparse structure. Each Newton-
1ike 1teration requires only one f evaluation, but two linear system sotu-
tions (with the same matrix I - yd).

Fitting methods appear to be useful only when the number of stiff
efgenvalues is quite small, say less than 10, and only when fairly good
estimates of those eigenvalues are available. The process of fitting the
free parameters to the given exponential modes is rather complicated and
must be repeated frequently throughout the integration, generally.

Hybrid methods include so many different posstbiiities that it is
presently impossible to make general comments about them. But a few iso-
lated studies of hybrid methods have shown some promise.

Partitioning methods appear to be suitable for genera1-use only if
they include a reliable automatic way of constructing the 1inear
transformation and the partition of the transformed dependent variable
vector. So far, methods for d01n§ this require that the number of stiff
modes be a fairly small fraction of the problem size N.

One-leg methods are closely related to 1inear muitistep mefhods and
share most of the properties which make the latter attractive for stiff
systems._ Moreover, the variable step forms of one-~leg methods seem to be
moré stable. When algorithmfc details are fully worked out, certain

one-leg methods are likely to be fully competitive with preséent linear

multistep methods.
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3. SOFTWARE

We now turn to software for solving stiff ordinary differential equa-
tions. In so doing, it is appropriate to give some caveats and a brief
history of stiff solvers. Then each of several groups of solvers will be
described.

The following does not constitute an endorsement of the 1isted soft-
ware. Nor-does it necessarily imply that unnamed solvers are not worth
trying. However, we can say that {f you are using a twelve 1ine solver for
differential equations on anything bigger than a hand calculator, you
sﬁou1d consider using one of the cited packages instead. Recently, we
have noticed that there s commercially available "software" for dif-
ferential equations with no error control, a user-specified fixed step
size, no warning messages, and so on. We strongly advise against using
such programs, even on a personal computer. The reasdns are straight-
forward. For all but trivial problems, such prdgrams cannot be
sufficiently reltable for accurate computationa) results. In short,

consider one of the solvers mentioned here.

A Brief Historical Background
We now turn to a short history of backward differentiation formula

based ODE solvers. This is an attempt to answer some questions which are
frequently asked of us. We also intend to give the reader some historical
perspective of ODE software.

To our knowledge, the first notion of stiffness and the first formal
methpdology for solving stiff ODEs was reported by Curtiss and
Hirschfelder (52). They used the term st777 for ODEs because the corres-

ponding servomechanism felt stiff, C. W. Gear became interested in stiff .



problems while visiting Argonne National Laboratory. He developed a soft-
ware package that used backward differentiation formulas (BDFs), which had
not enjoyed much favor among numerical analysts, e.g. [Henrici (62)].
Gear's pioneering code was called DIFSUB [Gear (68), {71a)].

Subsequenfly, Gear revised DIFSUB while visiting Stanford University
" 1n 1969. The new code was called STIFF. R. J. Gelinas, at Lawrence
Livermore National Laboratory, had been having trouble with some chemical
kinetics problems. He acquired STIFF and found that it could solve his
kinetics models. By this time, he had enlisted his co-worker, Hindmarsh,
as a collaborator. With consultation from Gear, they rewrote STIFF and
called the new package GEAR. By 1974, the code GEAR had gone through two
revisions by Hindmarsh [Hindmarsh (74)j.

A1l of these packages use BDF for the stiff solver option, and ex-
plicit Adams predictors and implicit Adams correctors for the nonstiff
option. They also use a fixed time step size h for several steps. Then,
they test to see if h should be changed dynamically to effect efficient
and accurate solutions. They can also dynémical]y change the order of the
formula of integration for efficiency and accuracy. These codes differ
from one another in several ways -- tuning parameters, code structure, -
11ﬁear élgebra routines, user interfaces, and overall robustness.

Several variants of GEAR had been developed by 1976. GEARB, GEARS,
and GEARBI differed from GEAR in the linear algebra routines [Hindmarsh
(77), (76c)], [Sherman & Hindmarsh (80)]. Consequently, problems of
various structures could be attacked with economy of both storage and
computer time. Other variants of GEAR were designed to take advantage of
computer architecture and/or problem structure --GEARBIL, GEARIB, GEARV,
GEARST [Hindmarsh (76 a-c), (79)] [Morris et al. (77)].



In 1973 Byrne was a summer visitor at Lawrence Livermore National
Laboratory. There Hindmarsh, R. P. Dickinson, Jr., R. J. Gelinas and
others were concerned with diurnal chemical kinetics probiems. In these,
the chemical reactions among minor species were turned on by the rising of
the sun and turned off at sunset. They felt that averaging,
pseudo-steady-state methods, and periodic restarts were not the answer.
The GEAR package used fixed step size for several time steps. Then, it
adjusted the step size by interpolating previously computed values. For
the diurnal kinetics model, the implementation of this fixed-step-
interpolate strategy was not stable. One consequence was the initiation of
a project to develop an integration package for stiff ODE systems with the
capability of adjusting 1ts time step after eac/ integration step.

Because this ability to change the step size ‘at each time step is built
into the formula, we call this a variable-step method.

The variable step BOF metho&s were Incorporated in EPISODE and its
variants. These developments were intermingled with the final-revisions
of GEAR and its variants [Hindmarsh (79)].

In 1976 we coliaborated in a report on calling sequences for stiff
ODE solvers [Hindmarsh & Byrne (76b)]. This report was based on several
discussions and workshops held during 19f§ and 1976. This evolved into a
project to develop the package called ELSODE. Subsequently, as a result
of a wider effort to standardize the user interface for ODE solve;s
[Hindmarsh (78)], this evolved into LSODE [Hindmarsh (80)]. In many ways,
LSODE is similar to GEAR, Rev. 3. However, LSODE has a user interface
that is much more flexible than GEAR, Rev. 3. LSODE also uses the LINPACK
14near algebra packages, dynamic storage allocation, more extensive
modularization and a wide range of types of error controls.

Of course variants of LSODE have been developed to handle problems of



varfous structures, as we shall see.

So far, we have given a rather quick sketch of ODE software along
Just one path. Even in the BDF tree, there are other computer codes and
developments. Valuable contributions were also made by R. W. Klopfenstein
and F. T. Krogh [Klopfenstein (71)], [Klopfenstein & Davis (71)], [Pellos
& Klopfenstein (72)], [Krogh (68)]. For variable step BDF, Brayton et al.
(72) and Hachtel, et al. (71) predated EPISODf with their papers on a
method for solving differential-algebraic systems. Gear (71b) had looked
at solving differential-algebraic systems with DIFSUB. Rubner-Peterson
(73) had also developed a BDF scheme for solving differential-algebraic
systems. Curtis (78) developed FACSIMILE, which solves certain kinds of
d1fferent1a1-algebra1c systems with a BDF method. Carver installed a
sparse solver (MA28) in GEAR, Rev. 2 within FORSIM [Carver (79)].: Krogh
and Stewart (84) developed a new implementation of BDF methods based on
stabi11ty with respect to Newton matrix errors. There are other such
developments, too numerous to mention here.

Now, lef us see what software 1s currently readily available and the

type or types of problems each package can solve.

LSODE and Its Variants
LSODE {Hindmarsh (80)] is the basic member of the LSODE family called

ODEPACK [Hindmarsh (83)]. LSODE 1s designed to solve stiff and non-stiff
problems in the canonical form (1.1)-(1.2). For these probiems, the
Jacobian matrix may be either dense (very few zero elements) or banded.
LSODI [Hindmarsh (80), (81), (82)] is intended to solve linearly
implicit ODEs of the form (1.14)-(1.15). LSODI allows A and gy to both be

either dense or banded.
If we want to solve problems of the form (1.1)-(1.2) with a sparse



Jacobian matrix, then we could use LSODES. This package uses components of
the Yale Sparse Package [Eisenstat et al. (77), (82)].

LSODA has a novel feature. It automatically switches between stiff
(BDF) and non-stiff (Adams) methods according to an algorithm developed by
Petzold [Petzold (83b)]. The basic purpose is to relieve the user of the
responsibility of determining whether, and also where, a problem is stiff
or non-stiff. For example, LSODA would select the non-stiff method in
transient regions and the stiff methods elsewhere. As for general problem
structure, the problem class addressed is essentially the same as that for
LSODE (full and banded Jacobians).

LSODAR 1s based on LSODA, but includes a rootfinder. It.gives the
user the capability of computing the zeros of a set of functions
{21(t,y):1515m}. This is called the g-sZop capability by F. T. Krogh,
whom we believe to have coined the term. For example, we could set Z4 =
yj=Cy in thé simulation of a continuously stirred tank reactor (chemical)
or Cx, where the idea is to stop the reactions and recover the pﬁoduct
when one or more components yy have reached a certain mole fraction Cy.
Other examples might include changing the system of differential equations
when a particle reaches a container wall in a tracking problem. Krogh has
used the example of.extending an antenna and revising the center of
gravity of a space vehicle when it reaches a prescribed position.

LSOIBT is designed for problems of the %onm (1.14)-(1.15). However,
LSOIBT assumes that A and gy are both block-tridiagonal in structure. By
this, we simply mean that these matrices can be partitioned inton x n
blocks. These blocks in turn form three stripes --the main block
diagonal, and the principal upper and lower block diagonals. As we noted
previously, this problem structure arises in the finite element solution

of one dimensional PDEs and elsewhere.
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This LSODE family, also known as ODEPACK, is available from the
National Energy Software Center, whose address is given in the Appendix.
EPISODE and Its Variants

For some problems, changes occur frequently or dramatically. Con-

sequently, the ability to change the step size at each integration step
can be advantageous. That is precisely why we developed the EPISODE
family. EPISODE [Byrne & Hindmarsh (75)], [Hindmarsh & Byrne (77)] is in-
tended for problems of the form (1.1)-~(1.2) with dense Jacobian matrices.
EPISODE does have a non-stiff option. We generally suggest that EPISODE
be tried after LSODE has failed on a stiff problem with occasional
fronts, because the overhead for EPISODE is frequently higher than thét
for LSODE. Moreover, the user interface is not as flexible as that for
LSODE. Finally, EPISODE does not use the modern linear algebra routines
that LSODE does.

EPISODEB [Byrne & Hindmarsh (76)] treats problems with banded
Jacobians of the same type as EPISODE. We would use EPISODEB after the

banded option of LSODE failed.

EPISODEIB [Byrne (79)) is designed to solve banded problems from the
class that LSODI solves. As another member of the EPISODE family, it is

intended for use on problems wjih fronts.
EPISODE, EPISODEB and EPISODEIB are all available from the National

Energy Software Center.

Other Descendants of GEAR and EPISODE

One of the GEAR family has not yet been superseded by a correspond-
ing member of the LSODE family. That package is GEARBI {Hindmarsh (76c)],
which is based on GEAR, Rev. 3. GEARBI is designed to solve problems with

a general block structure by block successive overrelaxation (block SOR).



DGEAR 1s the stiff ODE solver in the IMSL 1ibrary [IMSL (82)]. This
package is based on GEAR, Rev. 3, which is a precursor of LSODE. DGEAR
handles both stiff and non-stiff problems. For stiff problems, the struc-
ture of J may be banded or dense.

The NAG (Numerical Algorithm Group) 1ibrary [NAG (82)] lists five
stiff ODE solvers. To some extent, their purposes correspond to those of
the members of ODEPACK (the LSODE family). The codes and purposes are as
follows: )

e DO2EAF - Integration over an interval

o DO2EBF - Integration over an interval, with intermediate output

o DO2EGF - Integration until a componen£ of the solution reaches a pre-
scribed value

o DO2EHF - Integration until a function of the solution is equal to zero

e DO2QBF - A comprehensive integration package (called by all of the above

codes)
These routines are based on GEAR, Rev. 3 [Gladwell (79)].

DEBDF 1s a driver, which calls a modified version of LSODE. The
complete DEBDF package is a member of the SLATEC 1ibrary, which may be
obtained from the National Energy Software Center. The DEBDF package is
also a member of DEPAC [Shampine & Watts (80)]. .

A recent descendaqt of EPISODE 1s a code called TORANAGA [Axelrod et
al. (83)]. It uses variable-step variable-order BDF methods, but differs
from most other stiff solvers because it is designed for an environment
of large scale problems. It uses a memory management package, requires
the user to supply whatever linear system solver is appropriate, has an
elaborate dump/restart feature, and numerous optional inputs and outputs.

The software package SPRINT [Berzins et al. (84)] 1s designed for
both ODE and PDE systems. SPRINT is derived from LSODI and LSODES.
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Differential-Algebraic System Solvers

Software for differential-algebraic systems is now readily available.
Earlier, we saw that systems such as (1.12)-(1.13) can arise from solving
parabolic PDEs by the numerical method of 1ines via a Galerkin procedure.
Thgy can also arise 1n solving mixed parabolic-elliptic systems of PDEs
or directly in certain models of reactive flows or electronic
networks. In the past a version of GEAR, called GEARIB [Qindmarsh (76a)],
was used to solve differential and differential-algebraic systems of the
1inearly implicit form in numerical method of 1ines codes for PDEs. LSODI
has also been used for this purpose. Earlier wdrk [Gear (71b)] [Hachtel,
et al. (71)] [Brayton, et al. (72)] [Rubner-Peterson (73)] [Sincovec, et
al. (79)] [Klopfenstein (74)] focused on similar systems of differential-
algebraic equations that arise directly in the simulation of complex
electrical circuits.

More recent work on differentfal-algebraic systems has Ted to the
development of DASSL [Petzold (83a)], a differential-algebraic system

solver. DASSL is intended for the solution of problems of the general

form
g(t,y.9) = 0 (3.1)
Y(to) =Y (3.2)
¥(to) =1 (3.3)

Here, the data (3.3) may be either prescribed or computed from
(3.1)-(3.2). In any case, (3.1)-{3.3) must be consistent, i.e.
g (tos YosPo) = 0. It is certainly important to note that

differential-algebraic systems are not as straightforward as we might

suppose. [Petzold (82)], [Gear & Petzold (84)].
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Runge-Kutta Codes
Runge-Kutta codes for stiff ODEs are not generally available 1n the

more common software 1ibraries in the United States. Moreover, some of
the Runge-Kutta codes reported on elsewhere are listed as experimental
[Gaffney (84)].

Three codes based on implicit Runge-Kutta methods of the traditional
type have become well known. DIRK [Alexander (77)] uses
diagonally-implicit RK methods with fixed (selectable) orders up to four.
STRIDE [Burrage et al. (80)] uses singly-implicit methods in a
variable-order manner, up to order 15. An early code, COLODE [Hulme &
Daniel (74a-b)] uses fully fmplicit RK methods.

A number of solvers based on Rosenbrock-type methods are mentioned in
the 11terature. Kaps and Rentrop (79) mention GRK4A and GRK4T. Gottwald
and Wanner (81) mention ROW4A. Shampine (82a) mentions DEGRK., A1l of
these have imbedded methods of orders 3 and 4. Comparison tests on these

and other stiff solvers are given in [Kaps et al. (85)].

Blended and Composite Multistep Codes

* Blended linear multistep methods are best represented by the code
BLEND [Skeel & Kong (77)]. It uses a variable-order blend of Adams and
BDF methods, of order up to 7.

An early cyclic composite multistep code is STINT [Tendler et al.
(78a-b)]. It is also variable-order with orders up to 7. More recent
work on cyclic composite methods has focused on practical implementation
1ssues, and has resulted in a code called ODIOUS [Tischer & Sacks-Davis
(83), Tischer & Gupta (84)]. However, the authors of ODIOUS appear to

regard it as experimental, and are still testing various coefficient



choices in it.

H. Extrapolation Codes
An early extrapolation code is IMPEX2 [Lindberg (74)], which uses an

extrapolated implicit midpoint rule. A more recent code is METAN1 [Bader
& Deuflhard (83)], which uses a semi-implicit midpoint rule. A variant
of the latter was also developed for the case of a sparse Jacobian, and
called METAS1 [Deuflhard (81)]. Thé code LIMEX [Deuflhard et al. (85)]
is intended to solve differential-algebraic systems in the linearly

implicit form (1.14),with A sinqular and constant.

I. Second-Derivative Codes

An early implementation of second-derivative methods was the solver
SDBASIC [Enright (74)]. A more recent and more efficient implementation
is SDSTEP [Sacks-Davis (80)]. Both are variable-order, with orders up

to 9, and require the user to supply the Jacobian matrix exactly.
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4. EXAMPLE PROBLEMS AND CODE USAGE

Here we present several problems for computation. Each is easily
described. However, we feel these examples, as presented, represent a
cross section of real problems we have seen over the span of our careers.
In what follows, we generally do not rewrite or rescale the ODtEs, because
we believe the average user would not. Some problems even have a closed
form (analytic solution), e.g. Burgers equation. Despite their simplicity,
these examples often present interesting lessons - e.g. significance of
features in a solution, importance of repeated regions of stiffness,
diurnal kinetics, incompatible boundary and initial conditions, and so on.
The basic problems are described in Subsection A. The numerical results
and further discussion are given in Subsection B.

A. The Example Problems.
PROBLEM 1 - Robertson's Problem

We have already seen an example of a neutrally (cond1t10na11y)
stable, dense system of ODEs in normal form.  For our first problem, we
use Robertson's problem (1.3)-(1.4) on the time interval 0 ¢ t < 4 x 107.
By Ehoos1ng this interval, we place severe demands on the error control
and step size control of the solvers. The reason is this: 1f a zero or
near-zero eigenvalue of J goes positive in the numerical calculations, the
system becomes unstable. Moreover, as t gets larger, we expect the step
size h to increase dramatically for efficiency. The need to increase step
size for effictency and the simultaneous need to maintain strict error
control run somewhat counter to one another. Yet, this is precisely the

type of performance we look for in high quality ODE software.
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PROBLEM 2 - The Field Noyes Chemical Osciilator
This is another small, dense system in normal form. However, it is
potentially fconoclastic, because there are periodic transients followed
by regions of stiffness. This model represents a chemical oscillator, a
chemical reaction which takes ptace in such a way that the concentrations
of the three chemical species vary pertodically in time. In dimensionless

form the system is [Field & Noyes (74)]:

# = s(y?-ylyPeyl-ay'1?)
¥ = (P-Pybs - (4.1)
¥ = wiyl-y?)
where
s = 77.27, w = 0.1610, q = 8.375 x 1075, (4.2)

The initial data we use are
y1(0) = 4.0, y2({0) = 1.1, y3(0) = 4.0

and are due to Enright and Hull (76).

To connect this model with the chemistry somewhat, we note that yl 1s
the scaled concentration of bromous acid [HBrOz], y2 is the scaled
concentration of the bromide on [Br-], and y3 is the scaled con-
centration of cerium IV [Ce (IV)]. By looking at the reaction rate
coefficients in (4.1) and (4.2), we expect to see three disparate time
scales in the solution. By virtue of hindsight, we know that if the
output points are too far apart, we can expect to loose some features in

the solutton of this problem.
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PROBLEM 3 - Two Species Diurnal Kinetics
This is also a small, dense problem in normal form. This problem is
meaningful to us because it and similar problems led us to begin our col-
laboration and the development of the EPISODE family. This model repre-
sents the Chapman mechanism for the generation of ozone and the oxygen
singtet. It can be a severe test for a stiff ODE package. The symbolic

representation for the four reactions in this model are [Dickinson &

Gelinas (76)]:

0+ 02 ﬁa 03, k1

(4.4)

h
02-320, ky

h
03-30+02, ky

where k4 denotes the reaction rate for (i=1,2,3,4), M denotes some
molecule required to carry off excess energy, hv indicates a photo-
chemical reaction, and 0, 02, and 03 represent the oxygen singlet,

oxygen, and ozone, respectively. In the example, the concentration of 02,
denoted by [02], will be held constant, the fates ki and kp are fixed and
k3 and kg vary diurnally. If yl = [0], y2 = [03] and y3 = [02], the

system of ordinary differential equations is



# = Ryt = —kgyly? - oyly? + 2kg(t)y? + kg (t)y

(4.5)

¥ = R3(yLyP,t) = kyyly? - kyly? - k()P
with
y> = 3.7 x 1016

ky = 1.63 x 10716

ky = 4.66 x 107
exp[-ailsinut], sinut > 0
k1 = 1=3,4 (4.6)
0 ’ S"ﬂﬂt 50

ag = 22.62, a, = 7.601,

w = %/43200

and

y10) = 108, y2(0) = 1012, (4.7)

The constant 43,200 is twelve hours measured in seconds. Graphs of
the solution of this problem appear in Figs. 4.3 and 4.4. The former is
given on a shifted logarithmic scale and contrasts the behavior of yl and
y2, while the latter shows how y2 (or [03]) increases slowly. Note how yl
(or [0]) oscillates between large daylight values and small nighttime
values. Although this problem only involves three chemical species and
Just two of these have concentrations varying in time, it does have fea-

tures of larger problems:



- 5] -

e The Jacobian matrix is not a constant.
® The diurnal effect 1s present.
® The oscillations are fast.
® The time interval used is fairly fong, 0 < t € 8.64x105, or 10 days.
PROBLEM 4. A KIDNEY MODEL _
The following example was posed as a two point boundary value p%oblem

in [Scott & Watts (76)] and is attributed to Ivo Babuska. In [Bader &
Deuflhard (83)], the problem is given as

S'l =a (y3 - yl) yl‘/yz

$# =y -y

# = ety % ¥°) -a’ty® - it (4.8)

¥ = ay? - )

3 = -cly’ - y)/d
with

a =100, b=0.9, ¢ =1000, d = 10. _ (8.9)
The initial data here are:

¥H0) = ¥3(0) = y3(0) = 1.0 -

(4.10)

¥ (0) = -10
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In the original problem, the remaining condjtion was y3(1) = y5(1).

However, for 0 < t < 1, we take

y5(0) = 0.990268835 (4.11)
¥5(0) = 0.99 (4.12)
¥3(0) = 0.9 (4.13)

in turn. For the last two choices of the initial value, the problem is

reported to be stiff. For the first, it is reported to be non-stiff

[Bader & Deuflhard (83)].
Babuska and B. Kellogg have told us that this model §s indeed similay

to a three tube modei of a kidney. Solute and water are exchanged through
the walls of the tubes. Here yl, y5, and y3 represent the concentration
of the solute in tubes 1, 2, and 3, respectively. yZ and y 4 represent
the flow rates of tubes 1 and 3. We expect this problem to behave like
other first order two point boundary value problems.
PROBLEM 5 - A LASER OSCILLATOR MODEL
This pair of coupled equations represents a model of_a ruby laser

oscillator. If we let ¢ denote photon density and n denote dimensionless

‘population inversion, then we can write

h=-n (ag +8) + 7

(4.14)
$ =4 (pn - g) + ¢ (14n)
where the parameters are as follows:
o =1.5x 10718 p=25x10"
y=2.1x10° P =0.6 . (4.15)
¢ =0.18 < = 0.016

The initial conditions are:
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n(0) = -1
(4.16)

*(0) =0
This problem is challenging because it is stiff initially, but mildly

damped and oscillatory later. It can be shown that as t 3 ®», n 2
0.3-1.155 x 10~14 and ¢ » 3 x 1012 + 0.1798, the steady state values. It

suffices here to solve for 0 < t < 0.7 x 106 ns = 0.7 ms. Time t is in

nanoseconds.
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PROBLEM 6 - BURGERS' EQUATION
We have seen the basic idea of the numerical method of lines in Sec-
tion 1. It is not particularly difficult to see that the numerical method
of 1ines can impose quite a few requirements on a stiff ODE solver. Among

them are the need to track traveling waves.

With this in mind, we now describe a partial differential equation

with traveling wave solutions. Burgers' equation [Benton & Platzman (72)]

for u = u(x,t) is

0<x<1,t>0 (4.17)

u +uux=w

t XX

with subscripts denoting partial differentiation. An exact solution can
be shown to be

-1
u(x,t) = [ 1+ exp (—-gv - —4:— ) ] . (4.18)

The tnitial and Dirichlet boundary conditions are taken directly from
(4.18). Note that the solution is a travelling wave whose speed is dx/dt
= 1/2.

By the way, Burgers equation is a very good example for several
reasons:

e It is nonlinear.

e The exact solution of the PDE is known. [Benton & Platzman (72)].

e It can be thought of as a hyperbolic problem with artificial dif-

fusion for small v, [Chin et al. (79)]
e It is sometimes used in boundary layer calculations for the flow

of viscous fluids.

e It is very nearly a standard test probliem for PDE solvers.
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The simplest method of spatial discretization 1s to discretize along
the x-axis with a uniform mesh and to replace all spatial derivatives in

(4.17) by (say) centered finite difference analogues. Thus, if we take

1

A= w1
(4.19)

ui(t) = u(1A,t), = 0,1,...,N+1
then a system of ODEs for the method of 1ines (MOL) approach to solving

(4.17) is

0y= = (uy/28)(uyyq-uy_y) + (v/AZ)(u1+1-2u1+u,_1),f=1.z,....u (4.20)

ug(0) = [1 + exp(18/29)17,  1=1,2,...,N (4.21)

uglt) = [1 + exp(-t/av)]™" (8.22)
: : <1

upgg (£) = [ 1+exn (5 - &) ] (4.23)

where (4.21)-(4.23) are taken diréctly from (4.18) and where ujy = uj(t).
Although the problem (4.20)-(4.23) 1s of the desired form, its exact solu-

tion is not known. The exact solution 1s known only for the POE.

Finally, we can note by inspection that the system (4.20) has a

tridiagonal Jacobian matrix. The subdiagonal elements of the Jacobian

matrix are:

(4.24)
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while the diagonal elements are

4.25
du, l 2A A2 ( )
and the superdiagonal elements are
— C R S (4.26)
T 24 'A'i

for i=1,2,...,N, with appropriate_exc1us1ons and substitutions of (4.22)
and (4.23).

Another method to reduce Burgers equation (4.17) to a system of ODEs
was described by Chin et al (79). Their simplified Galerkin method uses
piecewise linear B-splines of chapeau functions as basis elements for
both test and trial functions. The inner product is taken by applying
Simpson's rule with the quadraturé points taken as the break points

for the basis functions. The system of ODEs then has the form:

AG = g(t,u)
with

A= (1/6).{3 diag [1, 4, 11}, an NxN tridiagonal matrix.
If uj(t) is the numerical solution of (4.17) at x4, then
gt = -[uly4y ~ u?4q]/28

+(v/82) [uq41-2u§*ui-1]s §5142,...N.

Note that this is almost the same as the right hand side of the finite
difference equation (4.20). The boundary and initial data can be taken
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from (4.21) -(4.23). The Jacobian matrix J for g follows from the

above and is described by

o' 2 29 2

m_i uj-1/8 + v/aé, -3u—1 = «2v/A¢, and

. agj

—_— = o + 2,

30741 Ui+1/8 + v/A¢. The Newton Matrix is
A - hBoJ

since it is a 1inearly implicit system of ODEs. Note that this procedure
can also be thought of as a collocation procedure. One of the tricks was
to interpolate the ul term rather than to work with u. ([Swartz &
Wendroff (69)].

PROBLEM 7 - Two Species Diffusion-Diurnal Kinetics-

One Dimensional

The main idea of this problem is to combine some of the features of
Problems 3 and 6. This example is another from the general area of trans-
port [Bird et al (60)] and 1s rather similar to one addressed by [Chang et
al (74)]. This is a diffusion-reaction problem and has no convective
term. Such problems are fa1riy common. A description of c!, the con-
centration of the i-th minor chemical species in the upper atmosphere,

is represented by

i

1
¥ =L kz) 35+ RY(e,t), 121,2,...,0 (4.27)

(>4

where z denotes the elevation above the earth in km, and %E [K(z) %g— 1s
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the diffusive term, accounts for vertical transport by turbulence. Hori-
zontal convection is neglected in this s1mp1e one dimensional model. The
term Ri(c,t) s the reaction term in this system, where ¢ = [cl,c2,...cI]T
-§s the vector of concentrations. Systems of this type have been
discussed by [Chang et al. (74)] and solved in the manner described below. -
In this prototypical example, we take I = 2, 30 < x € 50,
Q £t <8.64 x 104 (1 day measured in seconds), and K(z) =
exp (z/5-10-8) (kml/s), subject to the initial conditions

12

6 2
c1 {z,0) = 10" y(2) ¢“(z,0) = 10™° y(2) (4.28)
riz) =1 - 5%+ § &D°
Boundary conditions are taken to be
3c1 3c1
73 (30,t) = 35— (50,t) = 0, 1 = 1,2. (4.29)

The reaction terms Ri(cl,c2,t) = R‘(c;t) are taken to be identical to
those in Problem 3, given by (4.5) - (4.6), with ¢l = [0], ¢2 = [03], and
a constant third species concentration c3 = [02] = 3.7 x 106 (denoted y3
in (4.5))

To generate a system of ordinary differential equations, we will
discretize the 1nteryal 30 < z < 50 and replace all of the spatial deriva-
tives in (4.27) with centered finite differences. Let M = 50, say, set Az
= 20/M, and set zj = 30 + J(Az) for 0 ¢ J < M. Next, let c}(t) be the
approximation to ci(ZJ,t) obtained by solving
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-2 i i
¢y = (42) ["J+1/2°J+1 = (Ky4172 * Kyaa/2)¢9
(4.30)

Y "J-l/zc;-l] +R'(e,t)

for 1 =1,2; §J =1,2...,M and with Kj41/2 = K(z3§41/2)

= K(30 + [J+1/2]Az). The boundary conditions are to be replaced by ca =
c; in the ODE's for c{ and by c;_l a c;+1 in those for c;. The

system of N = 24 ODEs can be specified by setting y(t) = [c}(t), c2(t),
c%(t), cg(t){....cﬁ(t). cﬁ(t)]T. This procedure leads to the following

system of ODE's.

At the left hand boundary, we obtain:

= (02)7? [K3/2y3 . (K3/2 ' Kl/z)yl + K 1,2y3] + R Lyt
(4.31)

¥ = a2) ["3/23’4 § (“3/2+ “172 )’2 * K ]* R (i)
(4.32)

For 2 < 5 <M -1, (i.e. on the interior of the interval):

-1 _ .\ -2 2141 21-1
yo o= (a2) ["M/z’ - ("M/z + K;-l/z)V

+Ky /2y21'3 + R (2412 g (4.33)

2% . -2 24+2 22
¥ = (az) [Km/zy - ("m/z * KL-I/Z)Y

* K172 ’2"‘2] +R2 (2 e (4.34)
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At the right hand boundary, we obtain:

P e (a2)? [KH+1/2y2M.3 - (KM+1/2 * Kn-172 -

+ Ky g /0¥ 2"'3] + RLy2HL M ) (4.35)

M -2 2M-2 M
¥ = (az) [Knﬂ/z-" - (KM+1/2 * K172
b Kyt Z] + B2 (Y1, yM, e (4.36)

TMs system 1s in the desired form ¥ = f(y,t) and is subject to the

fnitial conditions taken from (4.28):

y2'1(0) = 105,(30 + 1 az)
§21,2,... (4.37)

y2(0) = 1012,(30 + 1 az)

In sumary, we have reduced the system of two parabolic PDEs (4.27),
subject to the initial and boundary conditions (4.28) and (4.29),
to a system of 2M ODEs (4.31) - (4.36), subject to the initial
conditions (4.37). The key step was the discretization or chopping

up of the regime in the z direction. In particular the approximation
2 ac’ (24) -2 i 1
FY K(ZJ) 2z = (Az) [K(ZJHIZ) (CJ'FI - CJ)
i i
- K(ZJ-I/Z) (CJ - cJ-l)]

is important.
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Finally, we remark that the Jacobian matrix for this system is a
5-diagonal matrix - the main diagonal, the two adjacent super dtagonals,
and the two adjacent subdiagonals contain all of the nonzero elements.
This can be verified by computing J or simply by noting the couplings 1n
the ODE's. The structure of this matrix is very important in the solution
of large systems as we noted eariier in Section 1. In particular the
centered finite difference discretization of two coupled parabalic PDE's
of type (4.27) always leads to a 5-diagonal matrix. Note that ordering by
grid point and then by species (the reverse of the order above) destroys

this structure.
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PROBLEM 8 - Two Species Diffusion ~ Diurnal Kinetics -
Two Dimensional

This example is based on a pair of PDEs in two dimensions, repre-
senting a simple model of ozone production in the straiosphere with
diurnal kinetics. (See also {Hindmarsh (83)] for comparison tests on this
problem.) There are two dependent variables cl, representing concentra-
tions of 0} (the oxygen singlet) and O3 (ozone) in moles/cm3, which vary'
with altitude z and horizontal position x, both in km, with 0 < x € 20,
30 { z < 50, and with time t in sec, 0 < t < 86400 (one day). These obey

a pair of coupled reaction-diffusion equations:

1 2 1 1
9 3 ) ) 1,1 2 .
ﬁ""h—aﬁ Yu ( K, (2) 3z ) * Rt “’1’2’24.38)

Ky =4 x 1078, K (2) = 1078 25, (4.39)

where the R1 (cl,cz,t) are jdentical to those in Problems 3 and 7 (see
(4.5) - (4.6)).

" We impose homogeneous Neumann boundary conditions:
act/ax =0 at x =0 and x = 20; acli/az = 0 at z = 30 and z = 50.
(4.40)
The initial conditions are given by polynomials that are siightly peaked
in the center and consistent with the boundary conditions:
cl(x,z,0) = 106 a(x) 8(2), c2(x,z,0) = 1012 «(x) 8(2),
o(x) 1 - (.1x - 1)2 + (.1x - 1)4/2, (4.41)
B(z) » 1 - (.1z - 4)2 + (.1z - 8)4/2.
These inftial values agree with observations fairly well.

We reduce the PDEs to ODEs using spatial central differences and a
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rectangular grid with uniform spacings, ax = 20/(J-1) and Az = 20/(K-1),
as in Problem 7. If c},k denotes the approximation to cl(xj,z.t),
where xg = (J-1)ax , zx = 30 + (k-1) Az , 1 < J< J , 1 € k < K, then we

obtain the following ODE's:
i _pf, .1 2 . 2 1 i i
cj’k- R (Cj,k’ cJ,k' t) + (Kh/Ax ) (°J+1,k - ZCJ’k+ °j-1,k)

+ (82)7% (K, (241 79) (C;,kﬂ - C;,k) = Ky(Zk-172) (°;1|,k' ¢j k1)1
(4.42)
At the boundaries, we take:

D B B
0,k = S2,k* SJ+1,k = C3-1,k (a1l k), and

(4.43)
i

i i = o
5,0 7 €3,2* S3,k01 = S k1 (213D

The size of the ODE system is N = 2JK. The variables are indexed first by
species, then by x position, and finally by z position. Thus in

¥ = f(t,y), we have cj,k = yp withm =1 + 2(j-1) + 2J(k-1)
The underlying assumption is that J is no bigger than K to keep the

bandwidth minimal. _
A strategy similar to this was described by [Chang et al. (74)] who
solved a system of over 14,000 ODEs in a study of the effect of supersonic

transports on the ozone layer. The form of the PDEs was (4.38).
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PROBLEM 9 - A Two Phase Plug Flow Probiem

Here we are concerned with a pair of coupled, ifmplicit differential-
algebraic equations for an unusual pipeline problem [Byrne & Ho (83)].
Briefly, we are interested in piping a stable foam from a ho]&1ng tank to
a processing plant. The foam is gas bubbles dispersed in a 1iquid phase.
If the foam (core phase) is to be successfully piped, 1t must be
surrounded by an incompressible 1ubr1cat1ng f1Im (annular phase).
Moreover, the pipeline pressure must be suffictently high to keep the

core from expanding to touch the wall.

We can develop this model by using the universal velocity law for
very large Reynolds number flow through a smooth pipe for the annular
phase. for the viscous core phase, we assume plug flow and expansion in
the radial direction only when pressure decreases. We also assume a no
slip condition at the interface between the two phases.

The equations describing the problem outlined above are:

v [R/(201112 (R - y )2 (-dP/dx)1/2 o

{ 2.5 an [(sR/2)Y72 (y su) (-dPrax)1/2 - 5

+10.5 } - [bQuy *+ PoQ, (1 = B)/P] = 0 (4.44)
2x [R/(20) 112 (~dprdx)1/2 { (2.5 Ry, - 1.25 y2) o
m [(oR/2)12 (yeim) (-eprax) M2 - 5]
Ry, - 2.125 y2 - 13.6

Ru [2/Rp) 1172 (-dP/dx)~1/2 } -Q, =0 (4.45)
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In this system, the prescribed parameters are:

R = pipe radius (cm)

p= density of the annular phase (g/cm3)

p = viscosity of the annular phase (poiée)

Po = inlet or initial pressure (dynes/cm?)

Qa = inlet flow rate for annulus or wetting agent (cm3/s)

Qco = inlet flow rate for the core or emulsion (cm3/s)

b = inlet volumetric fraction of the liquid in the foam

The equations are to be solyed for 0 < x < L where L is a prescribed
length (cm), corresponding to several kilometers. The values to be com-
puted at various distances down the pipe are: pressure P (dynes/cmz) and
the thickness of the annular phase y. (cm). It is also convenient to know
the pressure gradient, but not essential. '
There sre several interesting features in these equations. The pres-

sure grad1gnt dP/dx appears only with a negative sign and under radicals.
(If dP/dx > 0, the system breaks down as we would expect when invoking
Darcy's law.) The radicals appear both in the arguments of natural
logarithms and outside the arguments. Neither the initial value for y.
nor for dP/dx 1s prescribed. Flow choking corresponds to vanishing or
negative arguments of the natural logarithms. That {s, choking would
occur for a prescribed foam if the pressure gradient were too small in
magnitude, the pipe radius were too narrow for the length L, or the ini-
tial annulus thickness were too small. In particular, we note that these
equations are a coupled, implicit differential-algebraic system, which

appears to be non-stiff. Some typical data are as follows:
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Case 1. This 1s an example of a normal flow.
R = 4.572.101 cm
p= 8.14.10~1 g/cm3
u = 9.8.10~2 poise
b = 6.06.10-1
Qco = 1.1531x106 cm3/s
Qa = 2.035x105 cm/s
Po = 1.457x108 dynes/cm?
L = 8.047x106 cm

Case 2. This is an example of a flow which choked. Parameters not
1isted have the values specified in Case 1.
b = 3.45x10-1
Qcp = 1.7153x106
Qa = 3.027x105
Po = 1.378x108
L = 3.2188x107
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PROBLEM 10 - Troesch's Two Point Boundary Value Problem
It may seem unusual to see a two point boundary value problem 1isted
as a stiff ODE. We will use essentially the same technique as in
[Sincovec & Madsen (75)], which is in some sense tantamount to using time
t as a continuation parameter to solve an elliptic problem.

The problem to be solved is

0= 23 - 10 sinh (10u) (4.46)
X
for 0 < x <1 with
u(0) = 0

© } (4.47)

u(l) = 1
We simply replace this problem with the related time dependent problem

2

=3Y _ 10 sinh (10u) (4.48)
3)(2

Olﬂa
[ d [~

use the boundary conditions, and take an initial value
u(0,x) =0 for 0 < x <1 and (4.49)
u(0,1) =0

Again, we can use central differences to replace the second order spattal

derivative in (4.48). (See Problem 7.)

The use of a uniform grid for this problem is soon found to

be unwise, because the solution has a thin boundary layer near x = 1.

Thus, a modest uniform grid misses this feature, and a sufficiently fine
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one is inefficient outside of the boundary layer. Thus, following
[Sincovec & Madsen (75)], we pose a nonuniform grid of 51 points, with 14
equal intervals on [0,.4], 13 on [.4,.7], 12 on [.7,.9], and 11 on {.9,
1]. Alternatively, we expect that a good dynamic grid or moving finite

element algorithm would overcome this difficulty automatically.

. Finally, we again point out that the last four examples are treated
as partial differential equations by the numerical method of lines. We
have indeed carried out the discretizations by hand and have used ur_ﬂform
mesh spacing in atl but the last case. We do not advocate hand
discretizations in general and we do generally recommend high quality
method of lines codes. We have {llustrated the last four examples as we

did simply to show the requirements imposed on high quality ODE software,

as well as its use.
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Code Usage and Computational Results

We now turn to some of the pragmatics associated with the probiems

described in Subsection A of this section.

PROBLEM 1 - Robertson's Problem

The numerical solution of this problem 1llustrates the nearly loga-
rithmic increase in step size and the control of a neutrally stable pro-
blem. The step size did increase dramatically. In fact, ébserved values
ranged from about 4.5 x 10~1 to 1.7 x 106. The magnitude of the largest
step size may be mildly surp}1s1ng 1f we think in terms of asymptot1c
(h & 0) numerical results. . |

The CPU times on a CRAY 1S for 10 output points was 0.06 s for both
MF = 21 and for MF = 22. In LSODE, the software package we used -- MF =
21-- uses an analytic, user supplied, dense Jacobfan. On the other hand,
MF = 22 uses an internally generated, divided difference version of the
dense Jacobian. A 2 in the first digit of MF signifles the choice of BOF
or stiff option. It 1s not surprising that on a small, not very compli-
cated problem, the run times and results would be very similar.

The graphical results in Figure 4.1 show how y2 starts at 0, builds
to about 3.6 x 10~4 at about't = 2 x 103 s and decays. This phenomena
would be, at best, hard to capture by using absolute or relative error
control alone. Note that yl decays from 1 on about the same time scale as

y3 builds from O to 1. Note that steady state 1s not reached until t is
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in the millions. We used 100 data points for each component to generate
Figure 4.1. Note that good quality graphics and a reasonable choice for
scaling the dependent variables help to understand the chemistry.

The results shown in Figure 4.1 were obtained by setting the relative
error tolerance (RTOL) to 10'5 and thg absolute error tolerance (ATOL) to
the vector [10~6, 10-10, 10-6]7

As a general rule of thumb, we 1ike to set the relative error toler-
ance by asking how many digits of accuracy are required. If the answer is
r digits, then we set RTOL = 1.0 x 10~(r * 1) or less. (In the Robertson
example, fairly small RTOL helps to control the stability problem.)

To set ATOL, we ask what the noise level is for each component of the
solution. The noise level is the size of the largest number that may be
neglected for that component. (In the national budget, 106 appears to be
small enough.)

The selection of the error tolerances is very important and yet
fairly straightforward. The penalties for loose tolerances are incorrect
solutions and for t1ght'to1erances the penalties are high cost.

For RTOL = 10~3, ATOL = [10-3, 10~7, 10~3]T the results are accept-
able. The Cray 1S CPU time is about .015 s for.MF=21 and 22.
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PROBLEM 2 - The Field-Noyes Chemical Oscillator

The graphical results for this problem are shown in Figure 4.2 on the

time interval 0 to 610.0747. It 1llustrates several interesting features:

® Disparate time scales
® A trigger notch, and
® The periodicity of the solution

The time scales are evident, since the graph of yl looks like 3 sharp
upward direct spikes, y3 has a sharp rise followed by a'decay for about 90
S, and"y2 has a gentle rise and a decay for the remainder of the period.
The sharp downward spike 1in y2 has been Ealled the trigger notch. To .
resolve these features, we used 484 data points for each component of the
solutions. For these results, we used LSODE with RTOL = ATOL = 10~6, and
MF = 21. The problem features noted earlier are not major obstacles.

The tolerances of 10~6 may sound a bit academic. We should recall
that LSODE does not control global error directly. It controls local
error. With only 10 output points, the CPU time was 0.25 s on a CRAY 1s.

With tolerances of 10'3, the run times were lower, but the answers were

highly inaccurate.
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PROBLEM 3 - Two Species Diurnal Kinetics

This problem illustrates several points:

® Sharp fronts can be accommodated with modern ODE software.

® If negative results for the solution are smaller than ATOL and if
these results do not make the solution unstable, then we should
not worry about them.

® This problem requires the setting of a maximum time step size,

HMAX. In this case HMAX = 3.6 x 103 (1 hour).
In particular, the last point warrants the caveat that neither ODE soft-
ware packages nor their designers are omniscient. Intuition tells us that
if the time step 1s too large in this problem, the solver can go past a
major event--sunrise or sunset--and miss the feature we are after--the
sharp buildup or decay of a species.

To solve this problem, we used LSODE with ATOL = 10-4, RTOL = 1076,
and MF = 22. The output in the timed run was taken every 6 hours. This
run.took 0.84 s on a CRAY 1S. With MF = 21, the CPU time was 0.81 s for
these error tolerances. With RTOL = 10-3 and ATOL = 10-7, CPU time was
0.29 s and 0.31 s for MF =-21 and 22, respectively. However, the results
were not of as high a quality. With few exceptions, higher quality numer-
ical results take more CPU time than Tow quality results. We solved this
problem with EPISODE, too. That code should run well on a problem of this
type because the time step length can be varied at each step. We used a
relative error control of the following type. The error in Y} was con-
trolled relative to the quantity max(jy!|, FLOORY). For this particular
problem, we chose FLOOR = 10~4. Consequently, when |y!| > FLOOR, EPISODE
tries to keep the magnitude of the local error in y1 less than |y1| * EPS.
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(Here, EPS 1s the user specified error tolerance.) When |yl| <
FLOORT, EPISODE tries to keep the magnitude of the local error in y! less
than EPS * FLOORT. (See [Hindmarsh & Byrne (76a).]

For EPS = 10~6, FLOOR = 10-4, and MF = 21 the EPISODE run time
was 0.55 CPU seconds and for MF = 22, 0.59 seconds. For this probiem,
EPISODE was faster than LSODE for all tolerance§ that we tried.

The graphical results in Figure 4.3 were obtained with 401 output
points to resolve the solution adequate1y; Note that y2 = [03] 1ooks 1ike
a staircase with a rise at mid-day every day. In Figure 4.3, yl = [0]
looks 1ike a spfke with its amplitude increasing each day. A logarithmic
scale is used for the vertical axis. We cut off the bottom of the graph
of yl to 11lustrate other features, such as the increases in peak values
of yl and y2. The t-axis is scaled in days with each day beginning at
dawn, daylight lasting a half day and night lasting the remaining half

day.

PROBLEM 4 - A Kidney Model

The graphical results (with 201 data points for each species) in
Figures 4.4a, 4.4b, and 4.4c correspond to the initial values yg =
0.990268335, 0.99, 0.9, respectively. In the graphical results, we used
the observation that for t beyond 0.1, yl, y3, and y5 were virtually
equal. So, we did not plot y3 and y5. Furthermore, in Figures 4.4b and
4.4c, we show |y4). The figures 11lustrate the sensitivity of the solu-
tion to small changes in the choices of y§. This is a vivid 11lustra-
tion that two point boundarj value problems for first order ODEs can be
challenging. However, the solution curves are not overly exciting. By

actual computation with a non-stiff solver and with a stiff solver, we can
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compare the cost for these options with LSODE. In all three cases, the
cost for MF = 10 is at Teast twice as great as the cost for MF = 21 or 22.
In LSODE, MF = 10 causes LSODE to use Adams method with functional iter-
ation. Looking at the graphs probably does 1i1ttle to give insight to
stiffness. However, the timing results indicate all 3 cases are stiff.

We used RTOL = 10-6 and ATOL = 106 and 10 output points for the ‘timed
runs. The CPU times are in Table 4.4.

MF
¥8 10 21 2
0.990268835 .031  .012 .012
0.99 * .020 .021
0.9 * 055 .054

Table 4.4 CPU time in s for problem 4.

PROBLEM 5 - A Laser Oscillator Model

This ts a challenging problem. (See Figure 4.5a for a 901 point plot
for each g and n.) It is initially stiff and then has a damped oscil- .
latory structure with a period of about 7000 ns. Perhaps the earlier
remarks about omniscience ought to be recalled. In any case, intuition
suggests that an automatic method switching code such as LSODA would do
well on a problem such as this. It does not because it chose to continue
with the BDF method during the highly oscillatory part of the solution. In
fact, the LSODA performance is comparable to a straight application of
LSODE with MF = 21. What works most cheaply? Starting out with MF = 21
(BDF, analytic Jacobian) and switching to MF = 10 (Adams method,
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functional iteration) is the cheapest in CPU time. We made the switch at
t = 4.9 x 105 because that corresponded to several times the fastest time
constant. The catch is that either quite a 1ittle analysis to observe
this 1s required or some numeriqal computation must be done. Frankly,
neither may be realistic when results are needed quickly, staffing is
short, or budgets are small. It is far more likely that the user would
solve the problem with a straight application of LSODE.

A comparison of CPU times for 87 output points is given in Table 4.5
for several methods we tried. The results in Table 4.5 give CPU times for
the various choices of method.

RTOL = 10-6, ATOL = [10-9, 10-6)T.

Code © MF CPU(s
[SO0E 21 0.6%
LSODE 21 4 10 0.47
LSODA (T = 1) 0.74

Table 4.5 Run times for problem 5

Turning back to Figure 4.5a, the amplitudes of the oscillations in
¢ (plotted on a logérithmic_scaIe) are not represented by only 901 out-
put points. However the key features of oscillation and damping are cap-
tured. Figure 4.5b gives somewhat more resolution (401 data points on a

shorter t interval) and depicts less variation in peak values of d.
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PROBLEM 6 - Burgers' Equation

Reasons for including this example were noted earlier. Another 1s to
i1lustrate the two solution techniques for this mildly stiff problem.
Elsewhere we have worked with the traveling square pulse version of this
problem [Byrne (79)]. We again note that the cell Peclet number must be
fairly small for the numerical method of 1ines to work well on convective
problems. Finally, in applying both the finite element. and finite dif-
ference strategies, we use the banded version of the solver. The run

times for 50 interior grid points and 4 output times are given in Table

4.6.

Solver MF Method CPU(s)

LSODE 14 Finite Differences 0.032

LSODI 14 Simplified Galerkin  0.030
Table 4.6

The MF = 14 setting is for implicit Adams formulas with banded, analytic
user supplied Jacobian. We again used LSODE, with RTOL = 0, ATOL = 10-3.
Similar run times were obtained for other banded options.

The graphical results are given in Figures 4.6a and b. The solutions
for t =0, 1, and 2 are shown in Figure 4.6. When t = 3, the solution

fits the upper right corner of the u-x coordinate system. To the eye,
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graphical results for the simplified Galerkin (Figure 4.6b) and finite
difference method (Figure 4.6a) were identical. Moreover, results with 50
and 100 interior points were identical to the eye.

Note that we used MF = 14, /mp/7/c7it Adams formula and the analytic,
banded Jacobian in the modified Newton iteration. Run times for BOF were
comparable. This is the only test problem in the set for which we believe
this to be true. Again, we refer to this as a mildly stiff problem, be-

cause functional iteration would be expensive.

PROBLEM 7 - Two Species Diffusion-
Diurnal Kinetics - One Dimensional

This problem features both diffusion and kinetics. Consequently it is
reasonable to include it in a problem set of this type. Moreover, as we
mentioned earlier, it is similar to some early large scale method of line
problems. There is also a pedagogical reason for including this probiem.
It 1s just a one dimensional mixing version of Problem 3.

There are some other points, too. The analytic Jacobian version is
about twice as fast as the finite difference version.

" For 10 output times, RTOL = 10-3, ATOL = 10-1, and 50 interior grid
points, the run time with LSODE 1s 0.57 s with MF = 24, Figures 4.7a and b

give the results for cl and c2, respectivelly, at various values of t
(hours).

PROBLEM 8 -~ Two Spectes Diffusion-
Diurnal Kinetics - Two Dimensional

The lessons learned from one-dimensional problems can help with two
dimensional problems. However, there are aspects of the game that are

quite different. These include storage requirements for realistic resolu-
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tion, selection of 1inear algebraic methods, and, of course, speed of
solution. Pedagogically, it makes sense to add another degree of com-

plexity to PROBLEM 7.
In keeping with these remarks we break out GEARBI, modified for two

dimensional differencing problems. We give a brief comparison of GEARBI
with LSODE. Some data are given in Table 4.8

Code MF ATOL RTOL CPU(s)

LSODE 24 10-1 10-3 10.4

LSODE 25 10-1 10-3 29.6

GEARBI - 10-1 10-3 11.6
Table 4.8

Graphical results are given in Figures 4.8a-m. In these figures,

Ax = 20/19.

For tighter error tolerances, GEARBI is faster than LSODE. These data are
for a 20 x 20 grid and 12 output times.
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PROBLEM 9 - A TWO PHASE PLUG FLOW PROBLEM
We actually solved this problem in three different ways. The first way
was picked for such practical reasons as available software and severe con-
straints on the required turnaround time for the parameter study. The non-
1inear implicit nature of the problem precluded the direct use of LSODI. The

package DASSL was not initially at hand, so we used a combination of Newton's

method and LSODE as follows.

[ The spatial position x and pressure P are known values.
(Initially, x = 0, P = Py and estimates for y. and dP/dx were
also made.) Call the integrator, which only uses or requires

discrete Qalues of P, dP/dx, and y,.

° In the function subroutine called by LSODE, we treated (4.44)
and (4.45) as two nonlinear equations in y., and u =

(-dP/dx)1/2. These equations were solved using Newton's

method.

) The value of dP/dx = -ul was passed from the function routine to
the integrator, which in turn computed P at the next value of x,
and so on. (The most recent available values of y. and u were

used to start Newton's method.)

o When output was requested at x = xout, the value of P(xout) was
made available to the main program by the integrator. So
Newton's method was used to find u(xout) (and hence dP/dx) and
Yc(xout)., It was useful, but hardly necessary, to have dP/dx

as an output parameter.
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In the second method of solution, we just used DASSL in the most
obvious ways. (That is, we used the DASSL examples and preamble for the
problem setup and coding.) The initial values and slopes were computed as

before. Table 4.9 has CPU times for the normal flow case.

IBM 3033 AP Cray 1S

Newton/ LSODE 0.04 *

DASSL (divided difference Jacobian) 0.03 0.027

DASSL (user-supplied Jacobfian) : 0.04 0.027

LSODI * 0.024
Table 4.9

The IBM 3033 AP runs were with a Newton method taken from a continuation
package. The Cray 1S runs used DZERX, an IMSL nonlinear system solver.
The timings for the two machines were made in as nearly comparable ways as
possible. However, the IBM runs were made in an interactive environment,
and the-timings are rather rough. There are some other algorithmic dif-
ferences, too. We do not believe these two computers are generally com-
parable in speed. A1l runs are for Case 1 only. It is clear that the
computation of the starting values has significant impact on the timing.

Finally, the simplest codes to implement were those using DASSL.
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There is a third way to solve this problem. By way of a sketch, it

involves the following:

® Recognize that the logarithmic term is the same in both (4.44)
and (4.45).
o Eliminate the logarithmic term to get a quadratic equation in
U= (-dP/dx)1/2,
® Rearrange the system to get:
+ An explicit ODE for P
+ An algebrafc equation in P and Yo with care taken to pick
the right root of the quadratic equation.
® Solve the resulting system with LSODI.
It turns out that computationally this is faster than the other two methods.
Now we can look at some pragmatics. It 1s far simpler to use DASSL
directly. With today's staffing costs, 1t 1s surely less expensive to apply
DASSL directly. Less creative? Perhaps. The real 1i1fe setting for the solu-
tion of this problem left l1ittle cushion for experimentation and importing of
codes. The point i1s this. There are clever ways to solve problems. Occa-
sionally, pragmatics precliude their discovery or use. With some of today's
software, the risk 1s kept low. On the Cray 1S, the DASSL CPU time was .075 s
with RTOL = ATOL = 10-6, while the time for the LSODI trick was .069 s. Both
include the cost of find1ng initial guesses, and of calling ZEROIN to find

starting values. We can also get a feeling for the difference between Cray 1s

and an IBM 3033 AP.
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The graphical results for Case 1 (normal flow) are given in Figure
4.9a, while those for choked flow are given in Figure 4.9b. The normal flow
solution i1s fairly 1inear. The dramatic change in the pressure gradient in
the choked flow case is perhaps not surprising. We used 101 and 69 data
points to generate Figures 4.9a and 4.9b, respectively.

One feature that this problem has that is in no other problem in this
set is that we expected an abnormal termination of some kind for the case of
choked fiow (Case 2). In the original runs, we_d1d not know when to expect
choked fiow and trapped for non-positive arguments of the logarithm or error

flags from the integrator. According to the method used, we observed both

types of conditions.

PROBLEM 10 - Troesch's Two Point
Boundary Value Problem

The graphical results for this problem are given in Figures 4.10a and
4.10b. The runs were made with LSODE and the banded Jacobian options for both
the analytic (MF = 24) and divided difference (MF = 25) Jacoblans. The error
tolerances were set with RTOL = 0 and ATOL = 10-3. For 50 interior grid
points, the run times were 0.06 and 0.07 s fo} MF = 24 and 25, respectively.

The graphs show how the initial guess relaxes. The graphical solu-

tions for £t = 0.1 and t = 1 overlapped. We used 51 and 24 points to generate

each curve in 4.10a and 4.10b, respectively.
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5. RELATED DEVELOPMENTS

There are many ongoing or recent projects of potential interest here.
For example, the active work on Krylov subspace methods could mean that the
BOF solvers would need but minimal storage for certain types of PDEs. At this
time it is not quite clear to which classes of PDEs this work will be applica-
bie [Brown & Hindmarsh (85)]. Other storage reduction methods for MOL
solution of PDEs have also been investigated. These include several adapta-
tions of Newton's method -- Newton/successive over relaxation (SOR),
SOR/Newton, using only diagonatl blocks of the Jacobian and so on. Again, the
extent of the applicability of these methods is not well understood [Byrne &
Hindmarsh (85)]. In the broadest sense, the moving finite element methods and
dynamic grid methods could also be regarded as storage reduction methods. So
far, most test results are avatlable for only one or two PDEs in one gpat1a1
dimension. The worth of these techniques will be fully realized for reason-
ably sized systems of PDEs in one and two sﬁatiaI dimensions or problems in
three spatial dimensions.

It seems 1ikely to us that these methods will be effeétive on
reactive, diffusive, con;ective flows. If this is to be, the cell Peclet
numbers will be kept low by the adaptive techn1que.'

We have alluded to automatic method switching elsewhere in this
paper. The 1dea 1s for the code to pick a stiff or a non-stiff ODE method
automatically and dynamically. In this way, the more efficient method is
automatically applied to each phase of a problem. So far, efforts along these
1ines have been few. They have, however, met with some success [Petzold (83b)
Shampine (81), (82b)]. The extent of the consequences of such a code 1s not
clear. However, there is clear potential market for an automatic method

switching code, because the user does not need to choose a method.



The trend toward scientific/engineering workstations will impact ODE
solvers. We can expect to see an even stronger trend toward non-Fortran front
ends and graphical output in this setting. It is 1ikely that the smaller
problems will be run on the workstation and the larger ones uploaded to a
large scale computer or supercomputer. In this supercomputer setting, the
workstation would serve as a pre- and post processor.

The idea of having a good, inexpensive global error estimate has
drawn a fair amoﬁnt of attention. In most cases, this amounts to a clever
interpretation or solution of a fairly simple differential equation
(variatfonal equation). It appears that most of these estimates are based on
an asymbtot1c analysis (h30) and are currently fairly crude. Also, there is
not much numerical evidence to show that the global techniques are superior to
the ‘current local estimates. However, global estimates may prove to be
practical as they stand or as they evolve in the future. Some work in this
area for stiff ODEs includes: [Dew & West (79)], [Robinson & Prothero
(77)]1, [Prothero (80)], [Dahlquist (8la), (8lb)], and [Shampine (82)].

The value in computing global error is this. Global error is what the user
really wants to control. One issue is whether the global error estimate will
be simply supplied to the user or whether the estimate will be used to controi
order and step size selection. Another is the need to carry a diffefential
equation or its reduced cost solution for each ODE in the system. Finally,
there is some disagreement regarding the required quality of this estimate.
One drawback of using a variable step BDF lies in the retention of the
matrix
P=[I- heofy]
in the corrector phase of the code (See 2.12)). The parameter B, changes with

h. Consequently, the matrix P gets out of date, then needs to be re-evaluated
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and factored. Th; basic fdea is this. If the coefficient By can be held
fixed, then the matrix P does not need to be recomputed and factored as often
as when By varies freely. The cost of recomputing and factoring can be high.
The scheme becomes a 1ittle more apparent 1f the system {2.11) is multiplied
by b = 1/8¢ so that bl and hfy can, in some sense be treated separately. By
using interpolation, b can remain fixed when h changes. The consequence is
that a fixed leading coefficient method can be more stable than a fixed
step-inierpolate strategy (GEAR, LSODE) and less expensive, and a 1ittle less
‘stable than a variable step method (EPISODE). Indeed, Petzold used the fixed
leading coefficient approach in DASSL. [Petzold (83a}]. The pioneering work
in this area was done by Jackson and Sacks-Davis (80). The 1dea is promising

since it works well in DASSL and performed well in the Jackson and Sacks-Davis

prototypical revision of EPISODE.
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6. SUMMARY .

We have discussed the notion of stiffness, where it arises, and how
to pragmatically test for it in Section 1. There, we also looked at an exam-
ple of a neutrally (conditionally) stable system of ODEs, looked at eigen-
values of both ODEs and spatially discretized PDEs, particularly the heat
equation. We then turned to the various structures of systems of ODEs and
talked abﬁut the origins of the structures. With this discussion, we asso-
ciated the importance of the structure of systems of ODEs and how we might
take advantage of them. Finally, we discussed some of the features of the
solutions of systems of ODEs and how high quality software must handle them.

In Section 2, we presented some of ;he underliying methods for solving
stiff ODEs. These included BOF, Runge-Kutta, and other methods. In the cate-
gory of other methods were: averaging, extrapolation, one-leg, multi-
derivative, partitioning, composite, block, fitting, collocation, and blended
methods. Along the way, we also discussed error and step size control.

In Section 3, we gave a brief historical perspective of the develop-
ment of some stiff ODE software. Then, we turned to a discussion of the read-
11y available stiff ODE solvers. (Much of the highest quality software fis
available at low or no cost. Seé the Appendix'for sources of software.)

Section 4 is where we gave a number of examples. One word of cau-
tion. These examples are not very large or time consuming, in general. .For
example, see [Chang, et al. (74)], [Byrne & Hindmarsh (85)] for problems that
are larger in scale. We mention this because problem stze can and does bias
test results dramatically. Nonetheless, we believe these examples are fairly

representative with respect to many features. We did not, however, give
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examples using zeros of functions {g-stops) or problems involving extensive

constraints. These types of problems do occur and with some frequency

[Thompson & Tuttle (82)].

We believe that this review will be helpful to 1ine scientists and
engineers faced with the need to sojve a large number of problems quickly and
efficiently. Consequently, it could be (and has been) used in the classroom

or as a basis for a workshop. We also believe that this review indicates some

of the more promising areas of research and development for the solution of

stiff ODEs.
Finally, managers of scientific computing units can use this paper for an

overview of the field.
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APPENDIX
HOW TO OBTAIN STIFF ODE CODES

Here we have focused on ODE software that 1s readily available. We simply
l1ist known sources for such software. The ODE solvers in the National Energy
Software Center (NESC) are known by name and number.

Source: National Energy Software Center

Argonne National Laboratory

9700 South Cass Avenue
Argonne, IL 60439

Code Catalog Number

DASSL 9918

EPISODE : 675

EPISODEB 705

EPISODEIB : Not issued at this time
FORSIM 514

GEARBI Not jssued at this time
LSODE 592

LSOBI 9939

LSODA 9937

LSODAR 9936

LSODES 9938

LSOIBT ) : 9832

SLATEC Library (DEBDF) 820

STFODE/COLODE 652

TORANAGA Not issued at this time

We strongly recommend the following. If you want to obtain a code from
NESC, contact your in-house NESC represeﬁtat1ve. If you do not have an NESC
representative, telephone the NESC to determine prices, procedures, and tim-
ing. Note that the SLATEC Vibrary can be obtained directly from NESC.

The IMSL 1ibrary is often available on the in-house mainframe computer.
We recommend that you contact your in-house user representative, if you are

interested i1n using IMSL software. For further information about this 1i-

brary, write or telephone:
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IMSL
Sixth Floor, NBC Building
7500 Bellaire Boulevard
Houston, TX 77036-5085
The NAG 1ibrary may be on your in-house mainframe. Elements may also be
available to you for use on a personal computer. Again, see your in-house

user support staff. You may obtain further information about the NAG library

from
NAG Inc.
1131 Warren Avenue
Downers Grove, I11inois 60515
USA
or

NAG Central Office
Mayfield House
256 Banbury Road
Oxford 0X2 7DE
United Kingdom

It 1s possible that some experimental codes are available from their
authors for trial use and beta testing. Some of the papers cited include

statements of availability.
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Figure 4.7a. Two Species Diffusion - Diurnal Kinetics -
One Dimensional, Logarithmic ¢! Axis,
t in Hours, ¢! vs. z at Various t
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Figure 4.7b. Two Species Diffusion - Diurnal Kinetics -
One Dimensional, Logarithmic c2 Axis,
c2 vs. z at Various t
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Figure 4.8a. Two Species Diffusion - Diurnal Kinetiés -
Two Dimensional, Logarithmic ¢! Axis,
c! vs. z at Various x, t=0 Hrs.
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Figure 4.8b. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic c2 Axis,
c2 vs. z at Various x, t=0 Hrs.
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Figure 4.8c. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic ¢! Axis,
c! vs. z at Various x, t=1 Hr.
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Figure 4.8d. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic c2 Axis,
c2 vs. Z for Various x, t=1 Hr.
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Figure 4.8e. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic ¢! Axis,
¢! vs. z for Various x, t=3 Hrs.
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Figure 4.8f. Two Species Diffusion - Diurnal Kinetics -
- Two Dimensional, Logarithmic ¢2 Axis,
c2 vs. z for Various x, t=3 Hrs.
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Figure 4.8g. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic ¢! Axis,
c' vs. 2 for Various x, t=6 Hrs.
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Figure 4.8h. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic c2 Axis,
c2 vs. z for Various x, t=6 Hrs.
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Figure 4.8i. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic ¢! Axis,
¢! vs. z for Various x, t=9 Hrs.
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Figure 4.8j. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic c2? Axis,
c2 vs. z for Various x, t=9 Hrs.
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Figure 4.8k. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic c2 Axis,
c2 vs. z for Various x, t=12 Hrs.
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Figure 4.8l. Two Species Diffusion - Diurnal Kinetics -
Two Dimensional, Logarithmic ¢2 Axis,
c2 vs. 2z for Various x, t=18 Hrs.
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Figure 4.8m. Two Species Diffusion - Diurnal Kinetics -
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Two Dimensional, Logarithmic c2 Axis,
c2 vs. z for Various x, t=24 Hrs.
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Figure 4.9a. A Two Phase Plug Flow Problem, Normal Flow
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Figure 4.9b. A Two Phase Plug Flow Problem, Choking
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Figure 4.10a. Troesch’s Two Point Boundary Value Problem
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Figure 4.10b. Troesch’s Two Point Boundary Value Problem
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