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ABSTRACT

Global temperature series have contributions from different sources, such as volcanic eruptions and El Niño
Southern Oscillation variations. We investigate independent component analysis as a technique to separate
unrelated sources present in such series. We first use artificial data, with known independent components, to
study the conditions under which ICA can separate the individual sources. We then illustrate the method with
climate data from the National Centers for Environmental Prediction.
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1. INTRODUCTION

Observed and simulated global temperature series include the effects of many different sources, such as volcano
eruptions and El Niño Southern Oscillation (ENSO) variations. In order to compare the results of different
models to each other, and to the observed data, it is necessary to first remove contributions from sources that
are not commonly shared across the models considered. Such a separation of sources is also desired in order to
assess the effect of human contributions on the global climate.

Atmospheric scientists currently use parametric models and iterative techniques to remove the effects of
volcano eruptions and ENSO variations from global temperature trends.1 Drawbacks of the parametric approach
include the non-robustness of the results to the estimated values of the parameters, and the possible lack of fit
of the data to the model.

In this paper, we investigate the use of independent component analysis (ICA) as an alternative method for
separating independent sources in global temperature series. Instead of fitting parametric models, we let the
data guide the estimation, and separate automatically the effects of the underlying sources. We first assess ICA
on simple artificial datasets to establish the conditions under which ICA is feasible in our context, then we study
its results on climate data from the National Centers for Environmental Predictions.

The rest of this paper is organized as follows. Section 2 provides a brief summary of independent component
analysis, Section 3 presents the results of ICA on artificial data, Section 4 describes the results using climate
data, and Section 5 summarizes our findings.

2. INDEPENDENT COMPONENT ANALYSIS

This section provides a brief description of ICA.2–7 Connections of ICA to classical methods such as principal
component analysis (PCA), factor analysis (FA), and projection pursuit (PP), are also discussed in the references
above.

Assume that s = (s1, . . . , sp)
T is a p-dimensional, unobservable, non-Gaussian random variable whose statis-

tically independent components are mixed using an unknown linear transformation matrix Ak×p via

x = As, (1)
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to produce the observable k-dimensional variable x = (x1, . . . , xk)
T , with k ≥ p. The goal of ICA is to estimate

the underlying independent components s, also referred to as hidden variables or factors, and the mixing matrix
A from realizations of x.

If the dimensions k and p are equal, then the following inverse relation holds

s =Wx, (2)

where the weight matrix Wp×k is the inverse of the mixing matrix Ak×p in Eq. (1).

Statistical independence is a much stronger condition than uncorrelatdness. While the latter involves only the
second-order statistics, the former depends on all the higher-order statistics. Formally, the individual components
of the random variable y = (y1, . . . , yn)

T
are mutually uncorrelated, if for ∀i 6= j, 1 ≤ i, j ≤ n, we have

Cov(yi, yj) = E{(yi − E(yi))(yj − E(yj))} = E(yiyj)− E(yi)E(yj) = 0. (3)

In contrast, independence requires that the multivariate probability density function f(y1, . . . , yn) factorizes into
the product of the univariate densities fi(yi), i = 1, . . . , n, as

f(y1, . . . , yn) = f1(y1) . . . fn(yn). (4)

Independence always implies uncorrelatedness, but not vice versa in general. Only if the distribution f(y1, . . . , yn)
is multivariate normal, are the two equivalent. For Gaussian distributions, the principal components are inde-
pendent, and thus ICA has no advantage over PCA. In what follows, we will assume that at least one of the
hidden components is non-Gaussian.

Since in most applications it is impossible to derive truly independent sources, ICA methods define approx-
imate measures of independence as objective functions (also called contrast, loss, or cost functions), and then
search for projections of the observations that optimize those measures. A common measure of independence is
the entropy-based mutual information,8 which, for uncorrelated variables can be expressed as

I(y1, . . . , yn) = J(y)−
n
∑

i=1

J(yi), (5)

where
J(y) = H(ygauss)−H(y), (6)

is the negentropy of y, ygauss is a Gaussian random variable with the same covariance as y, and

H(y) = −
∫

f(y)logf(y)dy (7)

is the entropy of y. For a given covariance matrix, it is well-known that the Gaussian distribution has the
maximum entropy. Minimizing the mutual information is roughly equivalent to minimizing the entropy, and
therefore amounts to searching for components that are far from Gaussian. If ν denotes a standard normal
variable with mean zero and variance one, ν ∼ N (0, 1), it can be shown8 that the negentropy can be approximated
by

J(yi) ≈ [E{G(yi)} − E{G(ν)}]2, (8)

where G(.) is a non-quadratic function. For the results in this paper, we used the publicly available FastICA
algorithm2, 9 with the contrast function G(u) given by G(u) = log cosh(u).

Once the objective function is specified in a computationally tractable form, the independent components
are estimated using optimization algorithms such as Newton’s method, with the constraint that the terms be
orthonormal. The sought components yi will be estimates of the independent components si, and are of the form
yi = w

T
i x =

∑k
j=1 wijxj , with weights wi = (wi1, . . . , wik)

T , for i = 1, . . . , p. The corresponding weight matrix
in Eq. (2) is given by Wp×k = {wij}i=1,...p;j=1,...,k.



1. X0 = X− X̄

2. Σk×k = VΛVT

3. Rk×k =
√
Λ−1VT

4. Y0 = R X0, cov(Y0) = Ik

5. Apply the FastICA code to estimate the p independent components Ŝp×n and the corresponding mixing

matrix B̂k×p such that Ŷ0 = B̂ Ŝ

6. X̂0 = R
−1Ŷ0 = R

−1B̂ Ŝ

7. X̂ = X̂0 + X̄ = R−1B̂ Ŝ+ X̄ = Â Ŝ+ X̄, where Âk×p = R−1B̂

Table 1. Pseudo-code for estimating the independent components S of the original data X, and for decomposing X in
terms of the estimated components Ŝ. Quantities with hats involve estimates.

Throughout this paper, we assume that we have n observations, each being a realization of the random
variable x with mean µ = E(x) and covariance matrix Cov(X) = E{(x − µ)(x − µ)T }. We denote such an
observation matrix by X = {xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ n}. In terms of X, and the corresponding S = {si,j : 1 ≤
i ≤ p, 1 ≤ j ≤ n}, the ICA model in Eq. (1) becomes

X = AS. (9)

Let X̄k×1 and Σk×k denote the sample mean and covariance matrix of the n observations, respectively. Table 1
outlines our procedure to estimate independent components. Since we would like to express the observations in
terms of the estimated independent components, we keep track of the pre-processing transformations in steps 1
through 4, and use their inverses in steps 6 and 7 to map back the estimates to the scale of the original input
data. Hats above symbols indicate estimated values of the underlying quantities, involving the independent
component estimates in step 5 of the algorithm. If X̂ denotes the reconstruction of the original data X in
terms of the estimated independent components Ŝp×n and corresponding mixing matrix B̂k×p in step 5, we can

decompose X̂ as

X̂ = Â Ŝ+ X̄ (10)

= Â
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+ X̄ (11)

≡ X̂S1
+ X̂S2

+ · · ·+ X̂Sp
+ X̄, (12)

where X̂Sj
, defined above, is of size k × n, and it represents the contribution of the jth estimated independent

component to X̂, j = 1, . . . , p. The ith row of X̂Sj
, denoted by x̂i,Sj

, gives the contribution of the jth estimated
independent component to x̂i, i = 1, . . . , k. Equivalently, we can write Eq. (12) as

X̂ =











x̂1
x̂2
...
x̂k











k×n

=











x̂1,S1
+ . . .+ x̂1,Sp

+ x̄1
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+ . . .+ x̂2,Sp
+ x̄2

...
x̂k,S1

+ . . .+ x̂k,Sp
+ x̄k











k×n

. (13)

For artificial data, where S and A are known, the decomposition in Eq.( 12) can be compared with the true
decomposition

X = A S (14)
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Figure 1. Artificial data. (a) source S: s1 and s2; (b) observation X: x1 and x2.
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≡ XS1
+ XS2

+ · · ·+ XSp
. (16)

If xi,Sj
denotes the ith row of XSj

, i = 1, . . . , k, j = 1, . . . , p, then, similar to Eq. (13), we have

X =


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3. RESULTS WITH DATA FROM A SIMPLE ARTIFICIAL MODEL

In order to understand the use of ICA in separating climate signals, we first experimented with known signals.
We considered the simple case of two signals, one a synthetic volcano signal and the other a sinusoid to mimic
seasonal variation in the temperature. We modeled the volcano signal using the results in,1 where the effect of
a volcano signal on the global temperature is composed of two parts: a linear cooling from the time of eruption
terupt to a time tramp, and an exponential recovery thereafter. Thus, a volcano signal vt can be written as

vt =

{

−∆Tmax t
tramp

, t = terupt, . . . , tramp

−∆Tmax e−
t−tramp

τ , t = tramp + 1, . . . , n,
(18)

where ∆Tmax is the maximum cooling effect of the volcano, tramp > terupt is the time when the maximum cooling
occurs, and τ is an exponential decay time. Following,1 the volcano signal s2 used in our study is the sum of
two vt terms that model the effects of the El Chicón and the Pinutabo major volcanic eruptions of the recent
past. The values of the parameters are1 shown in Table 2. The time period for this data was 264 months, where
t = 0 corresponds to January 1979, and t = 263 corresponds to December 2000. The volcano eruptions occur at
months 39 and 147. We chose this particular time period to reflect the climate simulation data we describe in
Section 4. The sinusoidal signal s1 is simply s1 = sin{(1 : n)/5}, n = 264. The two signals are shown in Fig. 1,
panel (a). Next, using the mixing matrix

A =

(

1.0 0.4
0.5 0.6

)

(19)

we generated the observations X according to Eq. (9). Panel (b) in Fig. 1 shows the two components of X,
x1 and x2. Fig. 2 displays the observation data in terms of the generating sources. The two solid lines in the



El Chicón Pinutabo

n 264 264
∆Tmax 0.32 0.72
tramp 20 14
terupt 39 147
τ 30 30

Table 2. Parameters in Eq. (18) for two major volcano eruptions.
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Figure 2. Decomposition of X in terms of the original signal S in Fig. 1. (a) x1 = x1,S1
+ x1,S2

(solid); x1,S1
(dashed);

x1,S2
(dash-dotted); (b) x2 = x2,S1

+ x2,S2
(solid); x2,S1

(dashed); x2,S2
(dash-dotted).

two panels show the x1 and x2 vectors of X, respectively. The dashed lines in the two panels represent the
contributions of the first source signal s1 to x1 and x2, denoted by x1,S1

and by x2,S1
in Eq. (17), respectively.

In this simple case, x1,S1
= 1.0× s1 and x2,S1

= 0.5× s1. The dash-dotted lines show the contributions of s2 to
x1 and x2, respectively: x1,S2

= 0.4 × s2 in the upper panel, and x2,S2
= 0.6 × s2 in the lower panel. In both

panels, the solid vectors are the sums of the two other vectors: x1 = x1,S1
+ x1,S2

= 1.0 × s1 + 0.4 × s2, and
x2 = x2,S1

+ x2,S2
= 0.5× s1 + 0.6× s2.

Fig. 3 displays the estimated independent components Ŝ obtained after applying the algorithm in Table 1 to
X. The shape of the two original sources, s1 and s2 displayed in Fig. 1, is clearly visible. However, the scale and
the sign of the estimates are arbitrary.

Following the notation in Eq. (13), Fig. 4 presents the decomposition of the estimate X̂ in step 7 of Table 1
in terms of the estimated independent components. The two solid lines in the two panels show the x̂1 and x̂2
vectors of X̂, respectively. The dashed lines in the two panels represent the contributions of the first estimated
component ŝ1 to x̂1 and x̂2, denoted by x̂1,S1

and by x̂2,S1
in Eq. (13), respectively. The dash-dotted lines show

the contributions of ŝ2 to x̂1 and x̂2, plus a constant mean correction, respectively: x̂1,S2
+ x̄1 in the upper panel,

and x̂2,S2
+ x̄2 in the lower panel. In both panels, the solid vectors are the sums of the two other vectors. Note

that in this case, we knew the true sources, so we knew that we had to add the means to the second terms in order
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Figure 3. Estimated independent components Ŝ for the data in Fig. 2.
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Figure 4. Decomposition of X̂ in terms of the estimated independent components Ŝ for the data in Fig. 2. (a) x̂1 =
x̂1,S1

+ x̂1,S2
+ x̄1 (solid); x̂1,S1

(dashed); x̂1,S2
+ x̄1 (dash-dotted); (b) x̂2 = x̂2,S1

+ x̂2,S2
+ x̄2 (solid); x̂2,S1

(dashed);
x̂2,S2

+ x̄2 (dash-dotted).

to match the original data. In practical situations, however, the method cannot resolve shifts. Comparing Fig. 4
to Fig. 2, we note the excellent performance of the ICA method in this simple case: it estimated successfully the
observed signal in terms of the underlying independent components.

We also experimented with artificial data from more realistic models, and investigated the performance of
the FastICA algorithm in the presence of noise and dependencies among the sources.12 The method was fairly
robust to the presence of noise, but it failed when we violated the independence assumption.

4. RESULTS WITH THE CLIMATE DATA

Following our initial study on the use of ICA to separate signals generated by a linear mixing of two synthetic
sources that resembled climate data, we tried the techniques on real data from a climate simulation.

4.1. Description of the data

We conducted this study using the monthly mean temperature reanalysis data13 from the National Centers for
Environmental Prediction (NCEP). The data is on a 144× 73 longitude-by-latitude grid, on 17 vertical pressure
levels ranging from 10000 hPa close to the surface of the earth to 10 hPa at the highest elevation. It spans 264
months, from January 1979 to December 2000. Figure 5 displays the raw temperatures for January 1979 on the
144× 73 latitude by longitude grid at the 1000 hPa pressure level.

Since we expected the ENSO and volcano signals to have a strong latitudinal dependence, we performed
our analyses on zonally averaged data. At a given month and level, we first calculated the 73 zonal means
over the 144 longitudes. Following standard practices in the atmospheric sciences,14 we removed the seasonal
variation and centered the data as follows. For each month, we replaced the values at each of the 73×17(= 1241)
latitude-by-level grid points by subtracting their corresponding monthly means over the entire 22-year period.
The resulting time-centered values are referred to as anomalies in the atmospheric sciences literature.

Next, we weighted the data set appropriately to account for the unequal spatial grid sizes and altitude bands.
Figure 6 displays the January 1979 anomaly temperatures after the weights have been applied to the time-
centered zonally averaged data. Finally, we performed ICA on the k = 1241 by n = 264 space-by-time dimension
anomaly data set Xk×n.

4.2. ICA applied to the full dimensional climate data

Figure 7 shows the first six independent component estimates with the FastICA method applied to the Xk×n

anomaly data. The resulting IC estimates are very localized spatially and are not interpretable scientifically in
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Figure 5. January 1979 raw temperatures (Kelvin) on the 144 longitudes by 73 latitudes spatial grid for pressure level
1000 hPa.
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Figure 6. January 1979 zonal anomaly temperatures (Kelvin) on the 17 pressure levels by 73 latitudes grid.
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Figure 7. Six independent component bases obtained from the full-dimensional anomaly data.

terms of atmospheric processes. The large spikes are in fact artifacts due to over-learning in the ICA estima-
tion.3 Estimating n independent components along with the mixing matrix from only n samples is statistically
impossible since there are more parameters to estimate than available observations. We do have n samples of
the p-dimensional signal, but we do not expect to have n truly independent component sources.

4.3. Principal component analysis as a dimension reduction tool

Instead of working with the full high-dimensional anomaly data, we next explored ICA on reduced dimensional
representations of the data. Since there are only a limited number of atmospheric processes, before applying
ICA we first need to reduce the data to p dimensions, where p is the number of independent components sought.
We achieved this dimension reduction by using principal component analysis (PCA).

The PCA technique seeks linear combinations of the data with maximal variance. Given the zero-mean zonal
anomaly dataset Xk×n of dimension of k = 1241 spatial grid points and n = 264 months, let

Σk×k = Xk×nX
′
n×k (20)

denote the state-space scatter matrix14 (scaled covariance matrix), where X′n×k denotes the transpose of Xk×n.
The eigenvalue decomposition of Σ provides the eigenvector matrix Ek×k and the eigenvalue matrix Dk×k such
that

Σk×k = Ek×kDk×kE
′
k×k, (21)

where E is orthonormal, (i.e. E′E = EE′ = Ik×k), andD is diagonal, D = diag(d1, . . . , dk) with d1 ≥ d2 . . . ≥ dk.
To make the eigenvectors unique, we adopt the convention that the first non-zero term in each of the vectors is
positive. The corresponding state-space principal components are

Ak×n = Ek×kXk×n. (22)

The pth cumulative sum of the eigenvalues normalized by the total sum of the eigenvalues, defined as

λ(p) =

∑p
i=1 di

∑k
i=1 di

, (23)

indicates how much of the variation is explained by the first p, p ≤ k, components. Table 3 shows the percent of
variation explained for selected values of p.



p λ(p) p λ(p)
1 0.2033 22 0.9003
2 0.3527 35 0.9501
3 0.4390 50 0.9738
4 0.5057 79 0.9901
5 0.5660 100 0.9946
6 0.6212 150 0.9986
7 0.6626 200 0.9997
8 0.7006 216 0.9999
9 0.7361 234 1.0000
10 0.7645 1241 1.0000

Table 3. Percent of the total variation explained λ(p) by the first p principal components.
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Figure 8. Six independent component bases obtained from the first p=22 eigenvectors of the anomaly data scatter matrix.

4.4. ICA applied to the reduced dimensional climate data

The PCA results in Section 4.3 indicate that the first p = 22 PCs explain 90% of the variance. In this section,
we applied ICA to the anomaly data of reduced dimension, as described by the first p = 22 principal compo-
nents. Since the original anomalies are linear combinations of the PCs, we can easily obtain the IC coefficients
corresponding to the original data from the IC coefficients obtained for the PCs. Figure 8 shows six of the p
resulting independent basis images when ICA is applied to the first p = 22 eigenvectors of Σ. Figure 9 shows
the six projections of the anomaly data Xk×n onto the independent components in Figure 8.

The patterns in the sixth estimated IC basis and corresponding time series suggest characteristics associated
with ENSO variations, in particular, the Niño 3.4 index from NCEP. The Niño 3.4 index measures the monthly
sea surface temperature deviation from its long-term mean averaged over the Niño 3.4 region (5N-5S, 120-170W).
It is a standard index used to monitor ENSO events. If its 5-month running average exceeds +0.4 (-0.4) degrees
Celsius, it is considered an El Niño (La Niña) event. If we consider the time series from the last panel in Figure 9
along with the Niño 3.4 index, the correlation between the two series is 0.5788. The two series follow a similar
pattern, but they are shifted relative to each other. Lagging the IC time series back a few months increases the
value of the correlation coefficient as follows: corr(1)=0.6895, corr(2)=0.7410, corr(3)=0.7654, corr(4)=0.7587,
then decreases monotonically further. Figure 10 presents the IC time series shifted back by three months, along
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Figure 9. 6 state space IC time series.
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Figure 10. State space IC time series (scaled) with a three month lag, and Niño region 3.4 index. Correlation coefficient
is 0.76.

with the Niño region 3.4 index. The excellent match between the two series indicates the success of the ICA
approach to automatically separate sources in climate data.

5. SUMMARY

In this paper, we described our initial results with the use of ICA to automatically separate signals in climate data.
Our experiments with synthetic data that resembled climate signals indicated that the ICA technique deserved
further investigation. While a direct application of ICA to the global temperature data proved problematic, a
combination of PCA and ICA was more promising. The simple ICA model used in combination with PCA for
dimension reduction resulted in a slightly superior ENSO signal estimate than PCA alone.

Our future plans include interpreting the remaining PC and IC estimates in terms of atmospheric processes;
determining the sensitivity of the results to the number of components to estimate; incorporating constraints on
the shapes of the sought components (for example, volcano eruptions can only decrease the temperature, but
not increase it); investigating possible non-linearities in the mixing process; and providing uncertainty estimates
for the estimated components.
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