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Abstract

A few different approaches exist for computing undecimated wavelet transform. In this work we construct

three undecimated schemes and evaluate their performance for image noise reduction. We use standard wavelet

based de-noising techniques and compare the performance of our algorithms with the original undecimated

wavelet transform, as well as with the decimated wavelet transform. The experiments we have made show that

our algorithms have better noise removal/blurring ratio.

1 Introduction

Almost every kind of data contains noise. Noise reduction is a required step for any sophisticated algorithms in

computer vision and image processing. This problem has existed for a long time and yet there is no good enough

solution for it. A tradeoff between the removed noise and the blurring in the image always exist. The use of wavelet

transform for signal de-noising has been started in last decade. Wavelets capability to give detail spatial-frequency

information is the main reason for this investigation. This property promises a possibility for better discrimination

between the noise and the real data. Successful exploitation of wavelet transform might lessen the blurring effect

or even overcome it completely.

There are two main types of wavelet transform - continuous and discrete [2]. Because of computers discrete

nature, computer programs use the discrete wavelet transform. The discrete transform is very efficient from the

computational point of view. Its only drawback is that it is not translation invariant. Translations of the original

signal lead to different wavelet coefficients. In order to overcome this and to get more complete characteristic

of the analyzed signal the undecimated wavelet transform was proposed. The general idea behind it is that it
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doesn’t decimate the signal. Thus it produces more precise information for the frequency localization. From the

computational point of view the undecimated wavelet transform has larger storage space requirements and involves

more computations.

Two main algorithms for computing the undecimated wavelet transform exist. The algorithm à trous [6] and

Beylkin’s algorithm [1]. These two algorithms approach the problem from different ways. Another undecimated

algorithm exists that has been discovered in search for completely different properties [10]. For reviews on the topic

see [5], [12], and [13].

This paper is organized as follows. Section 2 and Section 3 give brief descriptions of the à trous and Beylkin’s

algorithms, which are the classical undecimated algorithms. Each of the Sections 4, 5, and 6 explains one of

the non-decimated algorithms that we have used in our experiments. Section 7 gives the outline of the wavelet

based denoising algorithms. Section 8 describes the experimental results and shows some of the images and the

measurements. Finally, Section 9 summarizes the results and the observations we have made while working on that

project.

2 The à trous algorithm

The most often mentioned algorithm is the “algorithm à trous”. It modifies the standard Discrete Wavelet

Transform (DWT) decomposition scheme by modifying the low pass and high pass filters at each consecutive level.

It imitates the sub-sampling of the filtered signal by up-sampling the low-pass filter. This up-sampling is done by

including zeros between each of the filter’s coefficients at each level. (The French word trous means holes.) The

detail coefficients are computed as the difference between the low passed images from two consecutive levels. The

inverse transform is computed by adding the detail coefficients from all levels to the final low-resolution image. We

have not implemented and tested the performance of this algorithm.

3 Beylkin’s algorithm

The non-decimation approach is one way to think about the undecimated wavelet transform. Another way is to

think about the shift invariance. To be completely shift invariant the transform has to be computed for all possible

shifts of the original signal. G. Beylkin [1] first realized that the coefficients from all shifts are not necessary. In

fact, the shifts by any odd number will give the same coefficients as the shift by one. The same is true for any even

number – it is equivalent to a shift by zero. Generally, this means that computing the DWT for the signal and

its shift by one and repeating this for each level, will give all possible wavelet coefficients. (For two-dimensional

signals the shift has to be extended to a shift by one in each direction - horizontal, vertical and diagonal.)

The inverse of this transform is not unique. Because of the shifts, we have redundant information. Instead of

having N coefficients as in the DWT, with the undecimated transform their number is approximately NlogN [1].

The original signal can be exactly reconstructed from any set of corresponding shifted coefficients. One approach

for constructing the inverse transform is to use a rule to decide which coefficients to throw away and which to
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keep. The goal is to eliminate the redundancy and end up with N coefficients. Then we can perform the inverse

of the DWT using the coefficients that are left. This technique is usually compared with the best basis algorithm

for wavelet packets. Wavelet packets are another way to have redundant information in the wavelet coefficients,

see [14], [5]. The difficulty with that approach is in defining the decision rule. Good decision rules are either

very computationally expensive or totally disregarding the spatial relationships of the coefficients. Another inverse

transform technique is to make the independent inverses for each shift and then to average the separate results into

one [12], [9]. If the coefficients are not changed the reconstructed image will be exactly the same as the original.

So we just have made number-of-shifts times more work. However, if the coefficients have been changed before

the inverse transform the reconstructed shifts will differ from each other. In the de-noising case, different parts of

the noise will be removed in the different shifts. By averaging the shifts the noise will be further reduced. This

approach has the nice properties that it is very simple to compute and it does not introduce artifacts. That is why

in our experiments we have used the averaging approach.

Beylkin’s algorithm produces very smooth results which makes the images to look blurred. On the other hand,

it reduces the noise a lot and makes the regions of constant intensity to look noise clean. See Fig. 3, 5.

4 Undecimated algorithm

This algorithm is based on the idea of no decimation. It applies the wavelet transform and omits both down-

sampling in the forward and upsampling in the inverse transform. More precisely, it applies the transform at each

point of the image and saves the detail coefficients and uses the low-frequency coefficients for the next level. The

size of the coefficients array do not diminish from level to level. By using all coefficients at each level, we get very

well allocated high-frequency information. From level to level there is very small step in the width of the scaling

filter - instead of 8 pixels at the third level of DWT, here its width is 5 pixels. Generally, the step is not a power of

2 but a sum with 2. This property is good for noise removal because the noise is usually spread over small number

of neighboring pixels. With this transform the number of pixels involved in computing a given coefficient grows

slower and so the relation between the frequency and spatial information is more precise. In the ideal case, this

means removal of the noise only at the places that it really exist, without affecting the neighboring pixels.

In our opinion this algorithm gives the best results in terms of visual quality – less blurring for larger noise

removal.

We have tested two reconstruction schemes. The first one applies the inverse decimated wavelet transform

without the up-sampling. The second one applies the traditional inverse transform at each level and then down-

sample the result in order to use it for the next level. The steps for this scheme are:

1. Compute the standard inverse transform for the final level. This gives an array that has double size in each

direction.

2. Decimate (down sample) the result and use it for the next level. Decimation reduces the size of the array

back to the original, so we can use it for computing the next level.
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(1) smallest MSE (2) best visual quality

method levels MSE method levels MSE

DWT 2 83.30 DWT 5 92.75

Beylkin’s 2 177.27 Beylkin’s 1 227.64

shift4+mean 2 76.37 shift4+mean 4 66.11

undecimated 2 136.11 undecimated 4 235.00

all average 4 83.53 all average 4 83.53

Table 1: Representative mean square errors for the denoised images. For comparison the MSE for the noisy image

(standard deviation σ = 20) used in this evaluations is 398.91. (1) Smallest MSEs from the different number of

levels. The MSE is computed relative to the original image. The mean square error measures the difference between

the values of the corresponding pixels from the two images. (2) Best visual quality. This is a subjective criterion,

which is a compromise between the removed noise and the blurring. When a lot of noise is removed the regions

with no changing intensity should look smooth. When the blurring is not a lot, the regions of high frequency data

should look clear and the detail should be detectable.

Both inverse schemes produce similar results. The statistics in the tables and the example images are computed

with the use of the second inverse scheme, which is less computationally expensive.

5 Averaging algorithm

A lot of computations have to be made in this algorithm. Its storage requirements are the same as in the

undecimated and Beylkin’s algorithm. It produces the best compromise between noise removal and blurring. The

algorithm consists of the following steps:

1. Compute one level of the wavelet transform for the original image and for its shifts by one.

2. Mix the low coefficient from the four shifts according to their origin. Use the result to compute the next level

at each shift. The size of the low coefficients array is equal to the image size

The idea is to approximate the low coefficients using the four shifts and thus to acquire better estimate of what the

non-noisy image might have be. We can expect this to work well because the low pass coefficients represent regions

of similar data in the signal and not singularities. Therefore, interpolating them will not introduce large errors [11].

The inverse transform is done in similar fashion.

1. Average the four final low coefficient images (one from each shift).

2. Use the result from the previous step, appropriately shifted, to compute the inverse DWT for each shifts at

that level. Repeat these two steps for each level.

The forward transform can be summarized with the following: Do the shifts → one level forward DWT → shift

back and interlace the low-pass coefficient array → go to the beginning
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(a) (b)

Figure 1: A result from the shift4 algorithm with and without post filtering. (a) shift4, σ = 20, 4 levels. MSE=93.17.

(b) the image in (a) followed bt 3× 3 mean filter. MSE=66.11.

The inverse: Shift back and average → shift forward and spread the averaged → one level inverse DWT → goto

the beginning

From all undecimated algorithms we have tested, this is the one that has the second smallest mean square error

for every σ (noise standard deviation) value. Smaller even than the DWT when σ > 10, see Table 2. De-noised

images with this algorithm are smoother than the ones produced with the undecimated algorithm. However, they

are not as smooth as ones from the Beylkin’s algorithm (Fig. 3). On the other hand, it removes more noise than

the undecimated algorithm and less than the Beylkin’s algorithm, see Fig. 5. We’ll refer to this algorithm as all

average.

6 Shifted algorithm

Undecimated algorithms produce better de-noising results than the decimated wavelet transform. Their only

drawback is that they are more computationaly expensive and need larger storage space. We have tried undecimated

algorithm that computes the shifts only at the first level. The algorithm applies the DWT independently over the

original image and its shifts by one. (In vertical, horizontal and diagonal direction.) In this case the storage space

requirements are three times bigger than the DWT, for any number of levels. The inverse transform is done also

independently and at the end the four results are averaged into one. This algorithm has very straightforward

implementation. We’ll refer to this algorithm as the shift4 scheme.

Unfortunately, despite of its small mean square error (MSE) values, this algorithm does leave noise in the filtered

images. To obtain good visual quality we are processing the results further with 3× 3 mean filter. This both keeps

the MSE error small - the smallest among all algorithms and also makes the visual quality better. There is almost

no blurring, see Fig. 1. The biggest advantage of this algorithm is the lower memory requirement.
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Different versions of the shift4 algorithm can be made with averaging the low frequency coefficients in the forward

or inverse transform, or in both of them. This, however, will involve more computations and will increase the cost

of the algorithm. The experimental results have shown only slightly better performance in this cases.

7 Wavelet thresholding for noise reduction

There are extensive studies on thresholding the wavelet coefficients for signal denoising [3], [4], [7], [8], and [9].

The so called wavelet shrinkage algorithm consists of the following steps:

1. Perform the forward wavelet transform.

2. Estimate a threshold.

3. Choose shrinkage rule and apply the threshold according to this rule.

4. Perform the inverse transform using the thresholded coefficients.

In our experiments we have used the universal threshold, soft shrinkage rule and scaled MAD (median absolute

deviation) noise estimator computed from the HH coefficients at the finest wavelet transform level. For more details

see [8]. The universal threshold is given by: λ =
√
2logN . where N is the size of the coefficient arrays. We have

computed N on the level dependent basis. For the Beylkin’s and shift4 algorithms the value of N changes for each

level. For the undecimated and all average algorithm it is a constant.

The shrinkage rule define how we apply the threshold. There two main approaches. The so called hard thresh-

olding deletes all coefficientss that are smaller than the threshold λ and keeps the others unchanged. The hard

thresholding is defined with: δλ(w) = sgn(w)(|w|)+, where λ is the threshold and the plus sign indicates only the

coefficients that are above the threshold are considered.

The other one - soft thresholding also deletes the coefficients under the threshold, but scales the ones that are

left. There are different ways of scaling. The general soft shrinkage rule is defined by: δλ(w) = sgn(w)(|w| − λ)+.

The scaled MAD noise estimator is computed by: MAD = median(|wi|)/0.6745, where wi are the HH coefficients

form the finest decomposition level.

We have made experiments with Symmlet, Coiflet and Daubechies wavelets. The results were similar for the

different wavelet basis. The experimental results that are shown in the figures and tables are for the Daubeshies

bases with length 4.

8 Results

For our experiments we have used images corrupted with additive Gaussian noise with N(0, σ2). For numerical

evaluation we have used the mean square error relative to the original image. Figure 3 shows the results from

denoising the “Lena” image. The results for other images have followed the same tendency.

Figure 4 shows an enlarged detail from the images, so the blurring effect can be evaluated better.
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(a) (b)

Figure 2: Edge detection results from the original image and the noise corrupted image with σ = 20. (a) Original

image. (b) Noisy image.

Figure 2 shows the edge detection applied to the original images and to the noise corrupted image with σ = 20.

Edge detection gives better idea of how much noise is removed and how well the edges are preserved. In the image

processing algorithms, it is often the next step after the de-nosing step. Figure 5 shows the edge magnitude resulting

from the Sobel edge detection operator applied over the same de-noised images.

9 Summary

We have designed three different undecimated wavelet transform schemes and tested their performance for image

denoising. Comparision with the performance of the standard discrete wavelet transform was made. Results show

that the undecimated transforms produce better results, although their mean square error is oftenly higher than

the DWT error. Our test set uses white additive non-correlated noise. Those algorithms might not show the same

behavior for different kind of noise.

We have made experiments with different wavelet bases observing no significant change in the final results. We

can conclude that for our experiment set the choice of the wavelet basis is not crucial.

Throughout this work we have noticed the big importance of the threshold value. Small changes in it mresults

in big changes in the de-noised image. The universal threshold makes general assumption about the noise. This

means that more sophisticated choice of threshold might improve the performance a lot.

Finally, we’ll note that the quality criterion is very relative. Depending on the type of images and the scale of

the objects in them one may prefer different algorithms. For example, in astronomical images, the quality criteria

depend on different features, compared to face images. De-noising algorithms might be better if they involve not

only the noise, but also the image spatial characteristics.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison among different techniques. σ = 20, Daubechies wavelet with length 4, Universal threshold

and soft shrinkage. (a) Original image. (b) DWT. (c) Beylkin’s. (d) Shift4 + mean filter. (e) Undecimated. (f) all

average
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The same test settings as in Fig. 3. Here a detail from the image is shown for blur comparision. (a)

Original image. (b) DWT. (c) Beylkin’s. (d) Shift4 + mean filter. (e) Undecimated. (f) all average.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The same test settings as in Fig. 3 followed by edge detection with Sobel operator. (a) Original, noise

free, image. (b) DWT. (c) Beylkin’s. (d) Shift4 + mean filter. (e) Undecimated. (f) all average.
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method levels σ = 10 σ = 20 σ = 30

DWT 3 65.90 85.80 153.04

DWT 4 72.30 90.70 180.94

DWT 5 74.62 92.75 197.35

Beylkin’s 1 202.63 277.64 270.08

Beylkin’s 2 169.06 177.27 188.30

Beylkin’s 3 229.36 239.77 247.45

shift4+mean 3 46.07 64.53 88.25

shift4+mean 4 46.07 66.11 89.92

shift4+mean 5 46.43 66.84 91.17

undecimated 2 95.13 136.40 186.83

undecimated 4 201.15 235.00 269.23

undecimated 6 328.85 360.61 394.70

all average 4 69.10 83.53 107.99

all average 5 68.09 82.37 104.95

all average 6 108.19 122.51 143.32

Table 2: The MSE values for different algorithms and for different σ values. We want to remind that the small

MSE values did not always correspond to good visual quality. (For example, the undecimated algorithm produced

one of the best results in terms of visual quality.)
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