On Random Numbers and the Performance of Genetic Algorithms

Erick Cantiu-Paz
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94550
cantupaz@llnl.gov

Abstract

Pseudo random number generators (PRNGs)
are the basic input to the stochastic selection,
recombination, and mutation operations of
genetic algorithms (GAs). Although it does
not seem like a crucial decision, recent studies
suggest that the choice of PRNG can affect
the performance of GAs. The objective of
this paper is to study the effect of PRNGs on
a simple GA, and to identify the components
that are most affected by the PRNG. The pa-
per presents ablation experiments using two
PRNGs and true random numbers from an
atmospheric noise source. The experiments
show that the PRNG used to initialize the
population is critical, but the PRNG used
as input to other operations does not af-
fect the performance significantly. We con-
firmed these results with additional experi-
ments that isolated single components of the
GA. In a few cases, we obtained improved re-
sults with a poor PRNG, but we were unable
to obtain improvements consistently across
the test functions used or with different seeds.
The results suggest that, in accordance with
common practice in other fields, it is prefer-
able to use the best PRNG available to avoid
muddling the interpretation of the results.

1 INTRODUCTION

A Dbasic component of genetic algorithms (GAs) is the
pseudo-random number generator (PRNG) that pro-
vides input to the stochastic selection, recombination,
and mutation operations. It is well known that the
performance of GAs is greatly influenced by the so-
lution encoding, population size, and choice of opera-
tors, and it may appear that the choice of PRNG is

relatively unimportant. However, several studies show
that the performance of evolutionary algorithms can
be affected by the choice of PRNG. In genetic pro-
gramming (GP), Daida et al. (1997, 1999) found sur-
prising improvements (ranging from 36% to 800%) on
different performance measures when a poor PRNG
was used. Meysenburg and Foster (1999a) found sim-
ilar but smaller differences in GP performance. In
GAs, Meysenburg (1997) and Meysenburg and Foster
(1997) found that, in very few cases, a poor PRNG re-
sulted in modest performance improvements, but they
found no evidence of better GA performance with good
PRNGs. Later, Meysenburg and Foster (1999b) found
additional evidence of poor PRNGs causing slightly
better GA performance, and also found that good
PRNGs caused worse performance in isolated cases.

Our own experiments show that small variations in the
PRNG can cause large deviations in the GA’s perfor-
mance. Consider the example in figure 1. A simple
GA is optimizing a fitness function formed by con-
catenating 13 copies of an 8-bit trap function (defined
later). The first graph shows the average fitness value
reached at the end of the experiments vs. the popula-
tion size. The only difference among the four plots is
the random number generator used. The two overlap-
ping plots in the middle show the results using a good
PRNG (a Mersenne Twister) and true random num-
bers (from an atmospheric noise source); the top and
bottom plots were obtained with a poor PRNG seeded
in two different ways. In some cases, the performance
with the poor PRNG seeded with an arbitrarily chosen
constant (10) is 35% better than with a good PRNG
and 100% better than itself seeded with random num-
bers (bottom plot). We observed similar trends with
7- and 9-bit traps, but we found no significant differ-
ences using other seven test functions. The second
graph shows the number of trap functions that were
solved to optimality (a performance measure strongly
correlated to fitness) vs. the population size.

Fitness

EU —

85 [B

80 [B

3 MT ——

f MT1000 :--%---
Seed=10 &

75 L L

0 500

L L
1500 2000

Population size

L
1000 2500 3000

Building blocks

q,m mmm%mnﬁp

%PD

mmmbmm?glmn [z

MT —+— |

MT1000 :--%---
SP‘Pd’lO &

L L
1500 2000

Population size

L
1000 2500 3000

Figure 1: Example of different performance using different sources of (pseudo)random numbers. The error bars
represent 95% confidence intervals. “MT” denotes experiments with a Mersenne Twister (MT), “True” denotes
experiments with a source of true random numbers, “MT1000” refers to the MT with its period limited to 1000,
and “Seed=10" is the limited MT initialized with the constant 10.

The objective of this paper is to continue the study of
the effect of PRNGs on GAs. We used ablation exper-
iments and simple fitness functions with known char-
acteristics to isolate the stochastic components of the
GA where the source of random numbers causes the
greatest difference. In the ablation experiments, we
used a “poor” PRNG as input to one of the stochas-
tic components of the EA (say selection) while using a
“good” PRNG for the rest of the algorithm. We per-
formed additional experiments isolating single compo-
nents of the GAs and compared the deviation of the
algorithms to their expected behavior, which was cal-
culated using existing models. We also performed ex-
periments that included a source of true random num-
bers, but we found no difference in GA performance
when compared to a “good” PRNG. We believe that
this is the first time true random numbers have been
used in GAs. The study was limited to simple genetic
algorithms with fixed-length binary strings and popu-
lar operators.

The results of this study show that the PRNG used
to initialize the population is critical to the perfor-
mance of the GA, but the PRNG used as input to
other GA operations does not affect the performance
significantly. The experiments also show that, at least
for the test functions used here, the choice of PRNG
can cause large variations in performance (much larger
than previously reported for GAs). Therefore, users
and researchers of GAs should choose the PRNGs and
their seeds carefully and report these choices appropri-
ately, as has been advocated elsewhere (Daida et al.,
1997; Daida et al., 1999).

The remainder is organized as follows: The next sec-

tion describes the PRNGs and the source of true ran-
dom numbers used in this study; section 3 describes
the experiments and presents the results; and finally,
section 4 summarizes the findings, issues recommen-
dations, and suggests opportunities for future work.

2 (PSEUDO)RANDOM NUMBER
GENERATORS

The consensus in many communities interested in
stochastic simulations is to use the best PRNG avail-
able. Using the best PRNG helps to ensure that the
results of a stochastic simulation are, in fact, a prod-
uct of the algorithm and its inputs, and not an artifact
of the PRNG.

The first PRNG used here is the Mersenne Twister
(MT) (Matsumoto & Nishimura, 1998), which is con-
sidered to be one of the best PRNGs currently avail-
able (it has a period of 219937 —1 and is equidistributed
in 623 dimensions). We used the implementation from
the GNU Scientific Library version 0.4. In particular,
this implementation uses the corrected seeding proce-
dure recommended by the MT authors. The second
PRNG used is also an MT, but its period has been
artificially limited to 1000 numbers by re-seeding the
generator every thousand calls with the original seed.
We refer to the second PRNG as MT1000. Meysen-
burg and Foster (1999b) used similar generators in
their experiments. In contrast to other studies that
compared EA performance using numerous PRNGs,
the experiments in this paper use only two generators
that represent extremes in PRNG quality. This choice
was motivated from the observations of Meysenburg

and Foster (1999b), where improvements in GA per-
formance were observed only with a very poor PRNG,
and no evidence of performance difference was found
using other relatively good PRNGs.!

In addition to the two PRNGs, we use true ran-
dom numbers obtained from an atmospheric noise
source. These random numbers are available at
www.random.org along with a description of the
method used to create them. Briefly, a radio was tuned
to a frequency where no one was transmitting, and the
noise received was fed to a workstation where it was
sampled as an 8-bit signal at 8KHz. The upper 7 bits
of each sample were discarded, and the remaining bits
were subject to a simple skew correction to ensure an
even distribution of ones and zeroes.

To create our true random generator, we concate-
nated the four pregenerated 10Mb files available at
www.random.org. These files are essentially streams of
random bits that need some preprocessing before using
them in a GA. The basic output from our PRNGs are
uniform random numbers in [0, 1]. To obtain the same
from the true random file, our C++ program read 4
bytes at a time into unsigned long (32 bit) integers and
divided them by 232.

Unless specified otherwise, we initialized the PRNGs
with 32-bit random integers obtained from the first
1Mb file from random.org. As our experiments below
confirm, the initialization of the PRNGs—especially
MT1000—was critical to the performance of the GA.

3 EXPERIMENTS

3.1 METHODS

The experiments used deceptive trap functions, which
are used in numerous studies of genetic algorithms be-
cause they have known properties and their difficulty
can be regulated easily (Deb & Goldberg, 1993). The
values of the deceptive functions depend on the num-
ber, wu, of bits set to one in their k-bit input substring.
The fitness increases with more bits set to zero until it
reaches a local optimum, but the global maximum is
at the opposite extreme where all the bits in the input
are set to one. The order-k traps are defined as

fk(u):{k—u—d if u<k,

1
k if u =k, L

L A short period is only one of the possible shortcomings
of a PRNG: Correlations between consecutive samples and
structural properties (such as the organization of the pseu-
dorandom numbers in lattices) were not considered here.

where d is the fitness difference of the two peaks, which
in our case is always set to one. The trap functions
become more difficult by increasing k and decreasing
d. We varied k from 3 to 10. The fitness functions are
formed by concatenating fully-deceptive trap functions
and adding their individual contributions. We decided
to set the length of the individuals to I = [100/k] * k
bits (i.e., 100 bits or the smallest integer multiple of
k larger than 100). For example, for the 6-bit trap
problem, the individuals are [= 102 bits long and
their fitness is calculated as Z;io fo(ue;), where ug;
denotes the number of ones in the substring that starts
at position 63.

The results reported here are from a simple GA with
fixed-length binary encoding, pairwise tournament se-
lection without replacement, one-point crossover with
probability 1.0, and point-wise mutation with proba-
bility 1/1. The population size for the 3,4,5,6-bit traps
varied from 2 to 300 in steps of 2. For the 7-bit prob-
lem, the population size varied from 10 to 1000 in steps
of 10, and for the 8,9,10-bit problems the population
varied from 20 to 3000 in steps of 20. The experiments
were terminated after 500 generations.

All the results were obtained repeating each experi-
ment 100 times with different random seeds, and two-
sided z tests with a = 0.05 were used to verify if
the observed means were different. The PRNGs were
called each time that a random number was needed
by the GA. For example, the PRNG was called once
for each bit in the initial population (instead of, say,
using the 32 bits returned by the PRNG to initialize
32 genes).

Our performance measure is the number of substrings
that converged to the global optimal value (all ones)
at the end of each run. We refer to these correct sub-
strings as building blocks. This performance measure
is adequate for the trap test functions, because the
number of optimal subfunctions is a binomially dis-
tributed random variable that can be well approxi-
mated with a normal, which is what the z test assumes.
This performance measure is strongly correlated with
the fitness, as can be observed by comparing the two
graphs in figure 1. This performance measure also al-
lows us to calculate easily the expected behavior of the
algorithm in some experiments below.

3.2 TRUE RANDOM NUMBERS

The first set of results compares the performance of
the GA using the true random numbers with the MT
and MT1000 PRNGs. For brevity we present only the
results for 3-,4-,7-, and 10-bit problems in figure 2.
The results for the 6-bit trap are similar to the 3-bit

problem: there are no noticeable differences, except in
a few cases at relatively large population sizes, where
the GA using the MT1000 performs worse. For the
problems with 4,5.8.9, and 10 bit traps, the GAs using
MT1000 perform noticeable worse than the GAs with
true random or MT, except for small population sizes.
The 7-bit problem has a similar behavior, but the tran-
sition to worse results appears at relatively large pop-
ulations. These results contrast with some previous
studies (Meysenburg & Foster, 1997; Meysenburg &
Foster, 1999a) that showed that, in general, the per-
formance of GAs was not adversely affected by poor
PRNGs, and that sometimes poor PRNGs resulted in
better results.

As mentioned in the introduction, the results in fig-
ure 1 use an 8-bit trap function. The overlapping
middle plots correspond to the MT and the true ran-
dom numbers. The bottom plot was generated with
the MT1000 PRNG seeded with the random num-
bers as described in the previous section. The top
plot was also generated with the MT1000 PRNG, but
the seed was arbitrarily chosen to be the constant
10. Surprisingly, this poor PRNG with an arbitrary
seed often outperforms all the other algorithms. We
observed similar trends with the 7, and 9-bit prob-
lems, but with the other functions the results between
the two MT1000 were statistically indistinguishable.
While these results are intriguing, the performance
with other arbitrarily chosen seeds was much worse
than the bottom plot in figure 1. In essence, the best
results were obtained by chance, and poor PRNGs do
not seem to offer an advantage in general.

For all population sizes and in all problems tested,
the GAs with the MT generator and the true random
numbers performed equally well (there was not a single
statistically significant difference). Therefore, in the
following experiments we omit the results with the true
random numbers.

3.3 ABLATION EXPERIMENTS

To further analyze the cause of the poor performance
of GAs with MT1000, we performed ablation exper-
iments. We started with a GA that uses MT for its
four randomized components (initialization, selection,
crossover, and mutation) and substituted MT1000 in
each of these components at a time as specified in ta-
ble 1. We also included the results where MT1000 is
always used. Figure 3 has the results of this study for
the 4-; 5-, 7-, and 10-bit functions. To minimize the
clutter, the graphs omit the results for mutation (exp.
5), which did not differ from the results with MT.

These results clearly show that the performance of

=
»
kel
-
=
=%
92]
o
—

N O U W N
<X < R <X < |E.

X-over Mut.

XX S X
XX L XL
XXX L L

Table 1: Ablation experiments setup. The / and
x represent the Mersenne Twister and the MT1000
PRNGs, respectively. Experiment 7 was used to ver-
ify the hypothesis that initialization was critical.

the GA that used MT1000 to initialize the population
(exp. 2) is strongly correlated with the performance of
the GA that uses MT1000 for all its operations (exp.
6). This suggests that the initialization of the popu-
lation is critical for the adequate performance of the
GA, but the PRNG used in selection, crossover, or
mutation seems unimportant. To provide additional
support for this hypothesis, we performed an experi-
ment where the population was initialized with MT,
and the rest of the GA operations use MT1000 (ex-
periment 7 in table 1). The results are also plotted in
figure 3, and are not significantly different than those
of the GA that uses MT exclusively.

3.4 ADDITIONAL EXPERIMENTS

To try to understand why crossover and selection do
not seem affected by the choice of PRNG, we per-
formed additional experiments. To study crossover, we
performed two different experiments. First, we fixed
the population size to 100 and the number of gener-
ations until termination to 500. Using the 4-bit trap
function and 100-bit long strings, we recorded the fre-
quency that each possible crossover point was chosen.
Ideally, we would expect that all points are chosen with
the same frequency, since the probability of choosing
each is uniform (p = 1/(I — 1)). However, it is natural
to expect some variability as the number of times a
particular point is chosen is a random variable with a
binomial distribution. Figure 4 presents the frequen-
cies (sorted to aid in visualization) along with the ex-
pected frequency and 95% confidence intervals (calcu-
lated assuming that the binomial distribution can be
approximated well with a normal). As we can see, the
true random and the MT generator produce results
that match our expectations, while using the MT1000
causes some crossover points to be chosen much more
frequently than others. These results would suggest
that the MT1000 is inadequate as input to crossover,

Building blocks

True :--%---
0 1 1 1 1 1
0 50 100 150 200 250

Population size

300

(a) 3-bit problem

14

Building blocks

True :--%---t

0 L L L L L
150 200 250

Population size

(b) 4-bit problem

300

10

Building blocks

MT ——

0 £ 1 1 1 1 1 1 L L True\ i

Building blocks

200 300 400 500 600 700 800
Population size

900 1000

(c) 7-bit problem

L L L
1500 2000 2500

Population size

(d) 10-bit problem

3000

Figure 2: Performance of GAs using true random numbers and the MT and MT1000 PRNGs. The error bars
represent 95% confidence intervals. The True and MT plots overlap, and are always at least as good as MT1000.

but in the ablation experiments we did not observe
significant differences with good quality generators.

We did additional experiments recording the number
of crossover operations that resulted in an offspring
with at least one optimal subfunction more than each
of the parents. Thierens and Goldberg (1993) call this
occurrence a mixing event. As k increases, we expect
fewer mixing events (all else being equal), and there-
fore the population was sized to 200 individuals for the
functions with k& = 3,4, 5,6 and to 1000 individuals for
the remaining problems. The results in table 2 show
that there are no significant differences in the num-
ber of mixing events using different sources of random
numbers. This agrees with the ablation experiments,
but it is puzzling that such a non-uniform distribu-
tion of crossover points has no apparent effect on our
performance measure (or in fitness).

Separate experiments were done to investigate the ef-

fect of random inputs to selection. In particular, the
following experiments verify if the expected fitness
gain after selection matches the theoretical expecta-
tions. If the fitnesses are distributed normally, the
mean fitness of the selected individuals can be calcu-
lated as (Miihlenbein & Schlierkamp-Voosen, 1993)

(2)

where porig and sl Tepresent the mean fitness of the
population before and after selection, I is the selection
intensity, which in the case of pairwise tournaments is
0.5642 (Miller & Goldberg, 1995; Back, 1995), and
Oorig is the standard deviation of the fitness of the
population before selection.

Hsel = Horig + IUoriga

For these experiments, the GA used populations of
10000 individuals of length 100 % k. We chose such
a large population to ensure that MT1000 generator
would cycle, and we used longer individuals to ap-

25

20

Building blocks
.
]
T

N
)
T

S5 ﬁl MT —— 7]
f Sel MT1000 :--%---:
E

Cross MT1000 &
MT1000 +--&--:

0 L L L L L
0 50 100 150 200 250 300

Population size

(a) 4-bit problem

14

10

Building blocks

MT ——

Sel MT1000 +--%--]
i Cross MT1000 &

F3 MT1000 +--#---i

o

0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900

Population size

(c) 7-bit problem

1000

Building blocks

MT —+—

Sel MT1000 -----:
Cross MT1000
e MT1000 :--& -

0 L L L L L
0 50 100 150 200 250 300

Population size

(b) 5-bit problem

MT —— -

Sel MT1000 :--%---
Cross MT1000 &
MT1000 - -

Building blocks

L L L
1500 2000 2500

Population size

(d) 10-bit problem

L
1000 3000

Figure 3: Performance of GAs in the ablation study. The error bars represent 95% confidence intervals. MT1000
and Init MT1000 are the two plots that overlap at the bottom; the rest of the plots overlap at the top.

proximate the assumed normal distribution. Since the
fitness functions are summations of 100 random vari-
ables, it is reasonable to assume that the fitness of the
initial population is distributed normally (the fitness
of the selected population is certainly not normal).

We initialized the populations using the true random
numbers to avoid any bias. Selection was driven by
the true random numbers as well as the MT and
MT1000 PRNGs. Pairwise tournament selection was
applied once to the randomly initialized populations,
and statistics of the selected individuals were recorded.
Table 3 shows the expected and experimental results
(averaged over 100 trials) of the mean fitness before
and after selection. There are no statistically signif-
icant differences between the expected fitness value
and the experimental results with the three sources
of (pseudo)random numbers.

Finally, we performed experiments to determine the ef-

fect of PRNGs on the initialization of the population.
We measured the number of optimal subfunctions in
a randomly initialized population of size 1000. Ta-
ble 4 has the average of 1000 repetitions using true
random numbers and the different PRNGs initialized
with random numbers. In addition, the table has re-
sults for MT1000 with a seed of 10, which produced the
improvements in performance in figure 1. The length
of the individuals was | = [100/k] = k, and the ex-
pected number of optimal subfunctions is 1/(k * 2%).
Only MT1000 seeded with 10 shows significant devia-
tions from the expected behavior. Note that MT1000
results have a higher variance (an order of magnitude)
than the other generators.

K True MT MT1000
3 04548 (21.99) 947.92 (26.07 933.42 (23.00)
4 75587 (25.44) 770.13 (24.50 742.82 (23.83)
5 553.56 (25.16) 554.77 (25.38 558.03 (25.27)
6 37656 (31.58) 37246 (27.61) 356.67 (27.25)
7 2528.23 (107.95) 2621.69 (102.39) 2492.4 (109.20)
8 1882.13 (127.38) 1870.27 (137.06) 1806.73 (123.02)
9 957.94 (132.21) 928.89 (128.53) 847.57 (108.75)
10 421.65 (104.56) 436.84 (109.23) 423.89 (104.86)

Table 2: Number of mixing events. The numbers in parenthesis are the standard errors.

k Original Expected True MT MT1000
3 99.9932 105.616 105.619 105.617 105.616
4 131.295 137.523 137.512 137.525 137.526
5 168.713 175.441 175.441 175.438 175.438
6 210.885 218.001 218.007 218.008 218.010
7 256.196 263.758 263.766 263.762 263.763
8 303.484 311.354 311.556 311.548 311.549
9 351.868 360.354 360.360 360.358 360.362
10 400.981 409.9156 409.921 409.911 409.924

Table 3: Population mean before and after selection driven by different PRNGs and true random numbers.

30000

28000

26000

Frequency
T
3
i
.
+
3
3
¥
*

24000 [

22000
*
x MT o+

MT1000 ¥
Expected

.
10 20 30 40 50 60 70 80 %0 100
Crossover point

20000
0

Figure 4: Frequency of choosing crossover points.

4 CONCLUSIONS

Previous studies have suggested that the choice of
PRNG has a small effect on the performance of GAs.
This paper presents additional experimental evidence
of the effect of PRNGs on GAs, and the results sug-
gest that the impact of the PRNG can be much more
dramatic than reported previously. In agreement with
other studies, we found that a poor PRNG can result
in improved performance. However, this improvement
is highly dependent of the seed, and we were unable to

obtain good results consistently across the test func-
tions used and different seeds. The ablation experi-
ments suggest that the PRNG used to initialize the
population is critical, while the PRNG used as input
to other stochastic GA operations does not seem to
affect the results. We performed additional experi-
ments isolating individual components of the GA that
seem to confirm these results. We did not observe any
improvement in performance using the true random
numbers over the MT generator.

The results of this study are limited to two PRNGs
and to the trap functions used. Future work should
apply the same experimental setup to additional func-
tions and PRNGs. The effect of PRNGs on other evo-
lutionary algorithms can also be studied with ablation
experiments. The criticality of initialization on the
performance of the GAs suggests that finding alter-
natives to the uniform random initialization may be
beneficial.

While the choice of PRNGs seems to cause consider-
able fluctuations in performance, the design of reliable
algorithms that consistently reach good solutions is
not likely to be found in the experimentation with ran-
dom seeds or different PRNGs. However, these large
fluctuations require that experimenters choose their
PRNGs and seeds carefully, and that these choices are
reported appropriately. The results of this paper sug-

k Expected True

3 1.25 4.2547 (0.0617)
4 15625 1.5668 (0.0368)
5 0.625 0.6255 (0.0236)
6 02656 0.2659 (0.0155)
7 01171 0.1175 (0.0107) 0.1172
8 0.0507 0.0515 (0.0070)
9 0.0234 0.0235 (0.0045)
10 0.0097 0.0098 (0.0028)

4.2475
1.5632
0.6248
0.2652

0.0506
0.0236
0.0098

MT MT1000 MT1000
seed=random seed=10
0.0621) 4.2382 (0.5039) 4.653
0.0392) 1.5635 (0.3795) 2.2
0.0259) 0.6217 (0.2462) 0.8
0.0164) 0.2647 (0.1182) 0.34
0.0108) 0.1149 (0.0711) 0.098
0.0071) 0.0511 (0.0729) 0.104
0.0049) 0.0233 (0.0295) 0.024
0.0032) 0.0109 (0.0324) 0

Table 4: Number of optimal subfunctions in randomly initialized populations. The numbers in parenthesis are

the standard errors.

gest that experimenters should use the best PRNG
available to avoid “lucky” accidents that can muddle
the interpretation of the results.

Acknowledgments

UCRL-JC-146850. This work was performed under the
auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

I thank the anonymous reviewers for their detailed and
constructive comments that helped improve the paper.

References

Béack, T. (1995). Generalized convergence models for
tournament- and (u, A)-selection. In Eschelman, L.
(Ed.), Proceedings of the Sizth International Confer-
ence on Genetic Algorithms (pp. 2-8). San Francisco,
CA: Morgan Kaufmann.

Daida, J., Ross, S., McClain, J., Ampy, D., & Holczer,
M. (1997). Challenges with verification, repeatabil-
ity, and meaningful comparisons in genetic program-
ming. In Koza, J. R., Kalyanmoy, D., Dorigo, M.,
Fogel, D. B., Garzon, M., Iba, H., & Riolo, R. L.
(Eds.), Genetic Programming 97 (pp. 64-69). San
Francisco, CA: Morgan Kaufmann Publishers.

Daida, J. M., Ampy, D. S., Ratanasavetavadhana, M.,
Li, H., & Chaudhri, O. A. (1999). Challenges with
verification, repeatability, and meaningful compar-
ison in genetic programming: Gibson’s magic. In
Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., & Smith, R. E. (Eds.), Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference 1999: Volume 2 (pp. 1851-1858).
San Francisco, CA: Morgan Kaufmann Publishers.

Deb, K., & Goldberg, D. E. (1993). Analyzing deception
in trap functions. In Whitley, L. D. (Ed.), Founda-
tions of Genetic Algorithms 2 (pp. 93-108). San Ma-
teo, CA: Morgan Kaufmann.

Matsumoto, M., & Nishimura,
T. (1998). Mersenne twister: A 623-dimensionally

equidistributed uniform pseudorandom number gen-
erator. ACM Transactions on Modeling and Com-
puter Sitmulation, 8(1), 3-30.

Meysenburg, M. M. (1997). The effect of pseudo-random
number generator quality on the performance of a

simple genetic algorithm. Master’s thesis, University
of Idaho.

Meysenburg, M. M., & Foster, J. A. (1997). The qual-
ity of pseudo-random number generators and simple
genetic algorithm performance. In Back, T. (Ed.),
Proceedings of the Seventh International Conference
on Genetic Algorithms (pp. 276-282). San Francisco:
Morgan Kaufmann.

Meysenburg, M. M., & Foster, J. A. (1999a). Random
generator quality and GP performance. In Banzhaf,
W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar,
V., Jakiela, M., & Smith, R. E. (Eds.), Proceedings
of the Genetic and Evolutionary Computation Con-
ference 1999: Volume 2 (pp. 1121-1126). San Fran-
cisco, CA: Morgan Kaufmann Publishers.

Meysenburg, M. M., & Foster, J. A. (1999b). Random-
ness and GA performance, revisited. In Banzhaf, W.,
Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V.,
Jakiela, M., & Smith, R. E. (Eds.), Proceedings of the
Genetic and FEvolutionary Computation Conference
1999: Volume 1 (pp. 425-432). San Francisco, CA:
Morgan Kaufmann Publishers.

Miller, B. L., & Goldberg, D. E. (1995). Genetic al-
gorithms, tournament selection, and the effects of
noise. Complex Systems, 9(3), 193-212.

Miihlenbein, H., & Schlierkamp-Voosen, D. (1993). Pre-
dictive models for the breeder genetic algorithm:
I. Continuous parameter optimization. Evolutionary
Computation, 1(1), 25-49.

Thierens, D., & Goldberg, D. E. (1993). Mixing in ge-
netic algorithms. In Forrest, S. (Ed.), Proceedings of
the Fifth International Conference on Genetic Algo-
rithms (pp. 38-45). San Mateo, CA: Morgan Kauf-

mann.

